These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25438583)

  • 1. [Event-related brain activity changes to consonant and dissonant chords in musicans and non-musicans].
    Maslennikova A; Varlamov A; Strelets V
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2013; 63(5):571-8. PubMed ID: 25438583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.
    Pallesen KJ; Bailey CJ; Brattico E; Gjedde A; Palva JM; Palva S
    PLoS One; 2015; 10(8):e0134211. PubMed ID: 26291324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited.
    Proverbio AM; Orlandi A; Pisanu F
    Eur J Neurosci; 2016 Sep; 44(6):2340-56. PubMed ID: 27421883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Perception of consonant and dissonant chords: changes in the power of the EEG evoked activity].
    Maslennikova AV; Varlamov AA; Strelets VB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(3):286-91. PubMed ID: 22891574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The variation of hemodynamics relative to listening to consonance or dissonance during chord progression.
    Daikoku T; Ogura H; Watanabe M
    Neurol Res; 2012 Jul; 34(6):557-63. PubMed ID: 22642826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consonant chords stimulate higher EEG gamma activity than dissonant chords.
    Park JY; Park H; Kim JI; Park HJ
    Neurosci Lett; 2011 Jan; 488(1):101-5. PubMed ID: 21073923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musicianship facilitates the processing of Western music chords--an ERP and behavioral study.
    Virtala P; Huotilainen M; Partanen E; Tervaniemi M
    Neuropsychologia; 2014 Aug; 61():247-58. PubMed ID: 24992584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study.
    Brattico E; Pallesen KJ; Varyagina O; Bailey C; Anourova I; Järvenpää M; Eerola T; Tervaniemi M
    J Cogn Neurosci; 2009 Nov; 21(11):2230-44. PubMed ID: 18855547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissonant endings of chord progressions elicit a larger ERAN than ambiguous endings in musicians.
    Pagès-Portabella C; Toro JM
    Psychophysiology; 2020 Feb; 57(2):e13476. PubMed ID: 31512751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
    Fishman YI; Volkov IO; Noh MD; Garell PC; Bakken H; Arezzo JC; Howard MA; Steinschneider M
    J Neurophysiol; 2001 Dec; 86(6):2761-88. PubMed ID: 11731536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulated neural processing of Western harmony in folk musicians.
    Brattico E; Tupala T; Glerean E; Tervaniemi M
    Psychophysiology; 2013 Jul; 50(7):653-63. PubMed ID: 23656582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain indices of music processing: "nonmusicians" are musical.
    Koelsch S; Gunter T; Friederici AD; Schröger E
    J Cogn Neurosci; 2000 May; 12(3):520-41. PubMed ID: 10931776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-Ordoño J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of acoustic dissonance in music: The role of musicianship, schematic and veridical expectations.
    Pagès-Portabella C; Bertolo M; Toro JM
    PLoS One; 2021; 16(12):e0260728. PubMed ID: 34852008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.
    Bones O; Plack CJ
    J Neurosci; 2015 Mar; 35(9):4071-80. PubMed ID: 25740534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials.
    Regnault P; Bigand E; Besson M
    J Cogn Neurosci; 2001 Feb; 13(2):241-55. PubMed ID: 11244549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.
    Koelsch S; Kilches S; Steinbeis N; Schelinski S
    PLoS One; 2008 Jul; 3(7):e2631. PubMed ID: 18612459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study.
    Putkinen V; Tervaniemi M; Saarikivi K; Ojala P; Huotilainen M
    Dev Sci; 2014 Mar; 17(2):282-97. PubMed ID: 24283257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.