BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 25438794)

  • 1. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.
    Goyal RK; Mattoo AK
    Plant Sci; 2014 Nov; 228():135-49. PubMed ID: 25438794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications.
    Lima AM; Azevedo MIG; Sousa LM; Oliveira NS; Andrade CR; Freitas CDT; Souza PFN
    Int J Biol Macromol; 2022 Aug; 214():10-21. PubMed ID: 35700843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.
    Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A
    Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of antimicrobial peptides in plant immunity.
    Campos ML; de Souza CM; de Oliveira KBS; Dias SC; Franco OL
    J Exp Bot; 2018 Oct; 69(21):4997-5011. PubMed ID: 30099553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant antimicrobial peptides: structures, functions, and applications.
    Li J; Hu S; Jian W; Xie C; Yang X
    Bot Stud; 2021 Apr; 62(1):5. PubMed ID: 33914180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Defense peptides of plant immune system].
    Egorov TsA; Odintsova TI
    Bioorg Khim; 2012; 38(1):7-17. PubMed ID: 22792701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.
    Goyal RK; Hancock RE; Mattoo AK; Misra S
    PLoS One; 2013; 8(10):e77505. PubMed ID: 24147012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Antimicrobial Peptide Genes Associated with Fungus and Insect Resistance in Maize.
    Noonan J; Williams WP; Shan X
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28914754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing.
    Slavokhotova AA; Shelenkov AA; Korostyleva TV; Rogozhin EA; Melnikova NV; Kudryavtseva AV; Odintsova TI
    Biochimie; 2017 Apr; 135():15-27. PubMed ID: 28038935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species.
    Pestana-Calsa MC; Ribeiro IL; Calsa T
    Curr Protein Pept Sci; 2010 May; 11(3):199-209. PubMed ID: 20088767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human antimicrobial peptides in ocular surface defense.
    Mohammed I; Said DG; Dua HS
    Prog Retin Eye Res; 2017 Nov; 61():1-22. PubMed ID: 28587935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant antimicrobial peptides as potential anticancer agents.
    Guzmán-Rodríguez JJ; Ochoa-Zarzosa A; López-Gómez R; López-Meza JE
    Biomed Res Int; 2015; 2015():735087. PubMed ID: 25815333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants.
    Bolouri Moghaddam MR; Vilcinskas A; Rahnamaeian M
    Mol Plant Pathol; 2016 Apr; 17(3):464-71. PubMed ID: 26220619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.
    Holaskova E; Galuszka P; Frebort I; Oz MT
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1005-23. PubMed ID: 25784148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification.
    Tang SS; Prodhan ZH; Biswas SK; Le CF; Sekaran SD
    Phytochemistry; 2018 Oct; 154():94-105. PubMed ID: 30031244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural perspective of plant antimicrobial peptides.
    Campos ML; Lião LM; Alves ESF; Migliolo L; Dias SC; Franco OL
    Biochem J; 2018 Nov; 475(21):3359-3375. PubMed ID: 30413680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides.
    Zhang LJ; Gallo RL
    Curr Biol; 2016 Jan; 26(1):R14-9. PubMed ID: 26766224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.
    Ilyas H; Datta A; Bhunia A
    Curr Med Chem; 2017; 24(13):1350-1364. PubMed ID: 28093983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of versatile plant antimicrobial peptides in agribusiness and human health.
    de Souza Cândido E; e Silva Cardoso MH; Sousa DA; Viana JC; de Oliveira-Júnior NG; Miranda V; Franco OL
    Peptides; 2014 May; 55():65-78. PubMed ID: 24548568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming.
    Jeon EJ; Tadamura K; Murakami T; Inaba JI; Kim BM; Sato M; Atsumi G; Kuchitsu K; Masuta C; Nakahara KS
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28724770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.