These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25439446)

  • 1. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.
    Periyaswamy T; Balasubramanian K; Pastore C
    Ultrasonics; 2015 Feb; 56():361-9. PubMed ID: 25439446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.
    Agrawal M; Prasad A; Bellare JR; Seshia AA
    Ultrasonics; 2016 Jan; 64():186-95. PubMed ID: 26387979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-coupled non-contact mechanical property determination of drug tablets.
    Akseli I; Cetinkaya C
    Int J Pharm; 2008 Jul; 359(1-2):25-34. PubMed ID: 18439773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-Coupled Excitation of a Slow A₀ Mode Wave in Thin Plastic Films by an Ultrasonic PMN-32%PT Array.
    Kazys RJ; Mazeika L; Sliteris R; Sestoke J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic broadband characterization of a viscous liquid: methods and perturbation factors.
    Ghodhbani N; Marechal P; Duflo H
    Ultrasonics; 2015 Feb; 56():308-17. PubMed ID: 25238692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range.
    Gudra T; Opielinski KJ
    Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of mechanical behavior of micro/nanofibrous materials designed for extracellular matrix substitutes.
    Rizvi MS; Kumar P; Katti DS; Pal A
    Acta Biomater; 2012 Nov; 8(11):4111-22. PubMed ID: 22842037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nanoporous carbon fibrous materials obtained by chemical activation of plane tree seed under ultrasonic irradiation.
    Kaludjerović BV; Jovanović VM; Stevanović SI; Bogdanov ŽD
    Ultrason Sonochem; 2014 Mar; 21(2):782-9. PubMed ID: 24094648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.
    Dupont T; Leclaire P; Panneton R
    J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of air-coupled ultrasonic materials characterization.
    Chimenti DE
    Ultrasonics; 2014 Sep; 54(7):1804-16. PubMed ID: 24650685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).
    del Río LM; López F; Esteban FJ; Tejado JJ; Mota M; González I; San Emeterio JL; Ramos A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1057-61. PubMed ID: 16814343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic evaluation of the physical and mechanical properties of granites.
    Vasconcelos G; Lourenço PB; Alves CA; Pamplona J
    Ultrasonics; 2008 Sep; 48(5):453-66. PubMed ID: 18471849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic investigation of granular materials subjected to compression and crushing.
    Gheibi A; Hedayat A
    Ultrasonics; 2018 Jul; 87():112-125. PubMed ID: 29477811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of material structure on air-borne ultrasonic application in drying.
    Ozuna C; Gómez Álvarez-Arenas T; Riera E; Cárcel JA; Garcia-Perez JV
    Ultrason Sonochem; 2014 May; 21(3):1235-43. PubMed ID: 24411471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Accurate and Robust Air-Coupled Ultrasonic Time-of-Flight Measurement Technique.
    Bühling B; Küttenbaum S; Maack S; Strangfeld C
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.