These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 25439509)

  • 1. Direct and octave-shifted pitch matching during nonword imitations in men, women, and children.
    Peter B; Foster B; Haas H; Middleton K; McKibben K
    J Voice; 2015 Mar; 29(2):260.e21-30. PubMed ID: 25439509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octave-shifted pitch matching in nonword imitations: the effects of lexical stress and speech sound disorder.
    Peter B; Larkin T; Stoel-Gammon C
    J Acoust Soc Am; 2009 Oct; 126(4):1663-6. PubMed ID: 19813781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception of pitch location within a speaker's F0 range.
    Honorof DN; Whalen DH
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2193-200. PubMed ID: 15898660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voice F0 responses to pitch-shifted voice feedback during English speech.
    Chen SH; Liu H; Xu Y; Larson CR
    J Acoust Soc Am; 2007 Feb; 121(2):1157-63. PubMed ID: 17348536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal imitation of song and speech.
    Mantell JT; Pfordresher PQ
    Cognition; 2013 May; 127(2):177-202. PubMed ID: 23454792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Analyses of Tone Productions in Sequencing Contexts Among Cantonese-Speaking Preschool Children With and Without Childhood Apraxia of Speech.
    Wong ECH; Wong MN; Velleman SL
    J Speech Lang Hear Res; 2024 Jun; 67(6):1682-1711. PubMed ID: 38662942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of frequency-shifted feedback on the pitch of vocal productions.
    ELman JL
    J Acoust Soc Am; 1981 Jul; 70(1):45-50. PubMed ID: 7264071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in cortisol stress response predict increases in voice pitch during exam stress.
    Pisanski K; Nowak J; Sorokowski P
    Physiol Behav; 2016 Sep; 163():234-238. PubMed ID: 27188981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between auditory and somatosensory feedback for voice F0 control.
    Larson CR; Altman KW; Liu H; Hain TC
    Exp Brain Res; 2008 Jun; 187(4):613-21. PubMed ID: 18340440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor control of vocal pitch production in Parkinson's disease.
    Chen X; Zhu X; Wang EQ; Chen L; Li W; Chen Z; Liu H
    Brain Res; 2013 Aug; 1527():99-107. PubMed ID: 23820424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of voice fundamental frequency in speaking versus singing.
    Natke U; Donath TM; Kalveram KT
    J Acoust Soc Am; 2003 Mar; 113(3):1587-93. PubMed ID: 12656393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of voice F0 responses to pitch-shift onset and offset conditions.
    Larson CR; Burnett TA; Bauer JJ; Kiran S; Hain TC
    J Acoust Soc Am; 2001 Dec; 110(6):2845-8. PubMed ID: 11785786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vocal training on the acoustic parameters of the singing voice.
    Mendes AP; Rothman HB; Sapienza C; Brown WS
    J Voice; 2003 Dec; 17(4):529-43. PubMed ID: 14740934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review of the voice-tagging hypothesis of speech-in-noise perception.
    Rosenthal MA
    Neuropsychologia; 2020 Jan; 136():107256. PubMed ID: 31715197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence in voice fundamental frequency during synchronous speech.
    Bradshaw AR; McGettigan C
    PLoS One; 2021; 16(10):e0258747. PubMed ID: 34673811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization.
    Chen Z; Liu P; Jones JA; Huang D; Liu H
    J Acoust Soc Am; 2010 Dec; 128(6):EL355-60. PubMed ID: 21218857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison between common marmosets (Callithrix jacchus) and human infants sheds light on traits proposed to be at the root of human octave equivalence.
    Wagner B; Šlipogor V; Oh J; Varga M; Hoeschele M
    Dev Sci; 2023 Sep; 26(5):e13395. PubMed ID: 37101383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individuals with autism spectrum disorder are impaired in absolute but not relative pitch and duration matching in speech and song imitation.
    Wang L; Pfordresher PQ; Jiang C; Liu F
    Autism Res; 2021 Nov; 14(11):2355-2372. PubMed ID: 34214243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal fundamental and formant frequencies affect perceptions of speaker cooperativeness.
    Knowles KK; Little AC
    Q J Exp Psychol (Hove); 2016; 69(9):1657-75. PubMed ID: 26360784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of habitual and derived optimal voice fundamental frequency values in normal young adult speakers.
    Britto AI; Doyle PC
    J Speech Hear Disord; 1990 Aug; 55(3):476-84. PubMed ID: 2381189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.