These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25439877)

  • 61. Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent.
    Attallah MF; Ahmed IM; Hamed MM
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1106-16. PubMed ID: 22565983
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of low-cost adsorbents for dye removal--a review.
    Gupta VK; Suhas
    J Environ Manage; 2009 Jun; 90(8):2313-42. PubMed ID: 19264388
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review.
    Demirbas A
    J Hazard Mater; 2009 Aug; 167(1-3):1-9. PubMed ID: 19181447
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera.
    Marungrueng K; Pavasant P
    J Environ Manage; 2006 Feb; 78(3):268-74. PubMed ID: 16112338
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution.
    Sivashankar R; Sathya AB; Krishnakumar U; Sivasubramanian V
    Ecotoxicol Environ Saf; 2015 Nov; 121():149-53. PubMed ID: 25957848
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Amino-functionalized alginate/graphene double-network hydrogel beads for emerging contaminant removal from aqueous solution.
    Sun Y; Zhou T; Li W; Yu F; Ma J
    Chemosphere; 2020 Feb; 241():125110. PubMed ID: 31683441
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr
    Luo H; Zeng X; Liao P; Rong H; Zhang TC; Jason Zhang Z; Meng X
    Int J Biol Macromol; 2019 Apr; 126():1133-1144. PubMed ID: 30610946
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phosphate removal from water using alginate/carboxymethylcellulose/aluminum beads and plaster of paris.
    Malicevic S; Garcia Pacheco AP; Lamont K; Estepa KM; Daguppati P; van de Vegte J; Marangoni AG; Pensini E
    Water Environ Res; 2020 Sep; 92(9):1255-1267. PubMed ID: 32153084
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin.
    Rocher V; Bee A; Siaugue JM; Cabuil V
    J Hazard Mater; 2010 Jun; 178(1-3):434-9. PubMed ID: 20153928
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads.
    Majidnia Z; Idris A; Majid M; Zin R; Ponraj M
    Appl Radiat Isot; 2015 Nov; 105():105-113. PubMed ID: 26275818
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Alginate hydrogel beads as a carrier of low density lipoprotein/pectin nanogels for potential oral delivery applications.
    Zhou M; Hu Q; Wang T; Xue J; Luo Y
    Int J Biol Macromol; 2018 Dec; 120(Pt A):859-864. PubMed ID: 30165144
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.
    Belščak-Cvitanović A; Komes D; Karlović S; Djaković S; Spoljarić I; Mršić G; Ježek D
    Food Chem; 2015 Jan; 167():378-86. PubMed ID: 25149001
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles.
    Tang Y; Li M; Mu C; Zhou J; Shi B
    Chemosphere; 2019 Aug; 229():570-579. PubMed ID: 31100628
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preparation of TiO2 nanoparticle from Ti-salt flocculated sludge with dye wastewater.
    Kim JB; Park HJ; Shon HK; Cho DL; Kim GJ; Choi SW; Kim JH
    J Nanosci Nanotechnol; 2010 May; 10(5):3260-5. PubMed ID: 20358935
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes.
    Sarmah D; Karak N
    Carbohydr Polym; 2020 Aug; 242():116320. PubMed ID: 32564829
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.
    Kang J; Sun W; Hu Y; Gao Z; Liu R; Zhang Q; Liu H; Meng X
    Water Res; 2017 Nov; 125():318-324. PubMed ID: 28869882
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetite nanoparticle embedded Pectin-graft-poly(N-hydroxyethylacrylamide) hydrogel: Evaluation as adsorbent for dyes and heavy metal ions from waste water.
    Kulal P; Badalamoole V
    Int J Biol Macromol; 2020 Aug; 156():1408-1417. PubMed ID: 31760033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase.
    Bilal M; Asgher M
    BMC Biotechnol; 2015 Dec; 15():111. PubMed ID: 26654190
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A study of effects of acid activated saw dust on the removal of different dissolved tannery dyes (acid dye) from aqueous solutions.
    Dhar NR; Khoda AK; Khan AH; Bala P; Karim MF
    J Environ Sci Eng; 2005 Apr; 47(2):103-8. PubMed ID: 16649612
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal.
    Kara A; Uzun L; Beşirli N; Denizli A
    J Hazard Mater; 2004 Jan; 106(2-3):93-9. PubMed ID: 15177097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.