These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 25439920)

  • 1. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.
    Moore SA; Ai Y; Chang F; Jane JL
    Carbohydr Polym; 2015 Jan; 115():465-71. PubMed ID: 25439920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.
    Qin F; Man J; Xu B; Hu M; Gu M; Liu Q; Wei C
    J Agric Food Chem; 2011 Dec; 59(23):12667-73. PubMed ID: 22059442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the action of porcine pancreatic alpha-amylase on native and gelatinised starches.
    Slaughter SL; Ellis PR; Butterworth PJ
    Biochim Biophys Acta; 2001 Feb; 1525(1-2):29-36. PubMed ID: 11342250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.
    Uthumporn U; Shariffa YN; Karim AA
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1167-82. PubMed ID: 22203397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.
    Baks T; Bruins ME; Matser AM; Janssen AE; Boom RM
    J Agric Food Chem; 2008 Jan; 56(2):488-95. PubMed ID: 18095648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area.
    Kong BW; Kim JI; Kim MJ; Kim JC
    Biotechnol Prog; 2003; 19(4):1162-6. PubMed ID: 12892477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp.
    Tawil G; Viksø-Nielsen A; Rolland-Sabaté A; Colonna P; Buléon A
    Biomacromolecules; 2011 Jan; 12(1):34-42. PubMed ID: 21158480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.
    Dhital S; Warren FJ; Zhang B; Gidley MJ
    Carbohydr Polym; 2014 Nov; 113():97-107. PubMed ID: 25256464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch.
    Foresti ML; Williams Mdel P; Martínez-García R; Vázquez A
    Carbohydr Polym; 2014 Feb; 102():80-7. PubMed ID: 24507258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of β-amylolysis on the resistant starch formation of debranched corn starches.
    Luckett CR; Wang YJ
    J Agric Food Chem; 2012 May; 60(18):4751-7. PubMed ID: 22524584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum.
    Lee HW; Jeon HY; Choi HJ; Kim NR; Choung WJ; Koo YS; Ko DS; You S; Shim JH
    J Agric Food Chem; 2016 Apr; 64(13):2709-18. PubMed ID: 26979859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches.
    Lopez-Rubio A; Flanagan BM; Shrestha AK; Gidley MJ; Gilbert EP
    Biomacromolecules; 2008 Jul; 9(7):1951-8. PubMed ID: 18529077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Food Chem; 2013 Dec; 141(4):4318-23. PubMed ID: 23993621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant).
    Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR
    FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of molecular structure on the susceptibility of starch to α-amylase.
    Villas-Boas F; Yamauti Y; Moretti MMS; Franco CML
    Carbohydr Res; 2019 Jun; 479():23-30. PubMed ID: 31102972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity.
    Sun L; Gidley MJ; Warren FJ
    Food Chem; 2018 Aug; 258():164-173. PubMed ID: 29655719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amylolytic hydrolysis of native starch granules affected by granule surface area.
    Kim JC; Kong BW; Kim MJ; Lee SH
    J Food Sci; 2008 Nov; 73(9):C621-4. PubMed ID: 19021791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.
    Shrestha AK; Blazek J; Flanagan BM; Dhital S; Larroque O; Morell MK; Gilbert EP; Gidley MJ
    Carbohydr Polym; 2012 Sep; 90(1):23-33. PubMed ID: 24751006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.