These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 25439947)
1. Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Zhou Y; Ding C; Qian X; An X Carbohydr Polym; 2015 Jan; 115():670-6. PubMed ID: 25439947 [TBL] [Abstract][Full Text] [Related]
2. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization. Wu X; Qian X; An X Carbohydr Polym; 2013 Jan; 92(1):435-40. PubMed ID: 23218317 [TBL] [Abstract][Full Text] [Related]
3. High mass loading polyaniline layer anchored cellulose fibers: Enhanced interface junction for high conductivity and flame retardancy. Chang Z; An X; Qian X Carbohydr Polym; 2020 Feb; 230():115660. PubMed ID: 31887901 [TBL] [Abstract][Full Text] [Related]
4. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. Sekar P; Anothumakkool B; Kurungot S ACS Appl Mater Interfaces; 2015 Apr; 7(14):7661-9. PubMed ID: 25783045 [TBL] [Abstract][Full Text] [Related]
5. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. Zhang X; He Q; Gu H; Colorado HA; Wei S; Guo Z ACS Appl Mater Interfaces; 2013 Feb; 5(3):898-910. PubMed ID: 23273023 [TBL] [Abstract][Full Text] [Related]
6. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. Zhang Z; Ma Z; Leng Q; Wang Y Int J Biol Macromol; 2019 Nov; 140():303-310. PubMed ID: 31415853 [TBL] [Abstract][Full Text] [Related]
7. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites. Zhou Z; Yang Y; Han Y; Guo Q; Zhang X; Lu C Carbohydr Polym; 2017 Dec; 177():241-248. PubMed ID: 28962765 [TBL] [Abstract][Full Text] [Related]
8. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Liu R; Zhang S; Zhao C; Yang D; Cui T; Liu Y; Min Y Nanoscale Res Lett; 2021 Jan; 16(1):4. PubMed ID: 33404823 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Superamphiphobic Cotton Fabrics with Highly Efficient Flame Retardancy, Self-Cleaning, and Electromagnetic Interference Shielding. Gong X; Xiong Z; Chen X; Meng F; Wang H ACS Appl Mater Interfaces; 2023 Jan; 15(2):3395-3408. PubMed ID: 36595716 [TBL] [Abstract][Full Text] [Related]
10. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes. Zhou T; Li C; Jin H; Lian Y; Han W ACS Appl Mater Interfaces; 2017 Feb; 9(7):6030-6043. PubMed ID: 28121121 [TBL] [Abstract][Full Text] [Related]
11. Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C Wu HH; Chang CW; Lu D; Maeda K; Hu C ACS Appl Mater Interfaces; 2019 Oct; 11(39):35702-35712. PubMed ID: 31532604 [TBL] [Abstract][Full Text] [Related]
12. Hollow Superstructure In Situ Assembled by Single-Layer Janus Nanospheres toward Electromagnetic Shielding Flame-Retardant Polyurea Composites. Bi X; Song K; Pan YT; Barreneche C; Vahabi H; He J; Yang R Small; 2024 Mar; 20(12):e2307492. PubMed ID: 37946679 [TBL] [Abstract][Full Text] [Related]
13. Suppression of Smoldering of Calcium Alginate Flame-Retardant Paper by Flame-Retardant Polyamide-66. Xu K; Tian X; Cao Y; He Y; Xia Y; Quan F Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572902 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Silica-Phytic Acid Coatings: Effect on the Thermal Stability and Flame Retardancy of Cotton. Barbalini M; Bertolla L; Toušek J; Malucelli G Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614810 [TBL] [Abstract][Full Text] [Related]
15. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties. Tissera ND; Wijesena RN; Rathnayake S; de Silva RM; de Silva KMN Carbohydr Polym; 2018 Apr; 186():35-44. PubMed ID: 29455996 [TBL] [Abstract][Full Text] [Related]
16. Nanoscale measurements of conducting domains and current-voltage characteristics of chemically deposited polyaniline films. Wu CG; Chang SS J Phys Chem B; 2005 Jan; 109(2):825-32. PubMed ID: 16866448 [TBL] [Abstract][Full Text] [Related]
17. Effect of CSA concentration on the ammonia sensing properties of CSA-doped PA6/PANI composite nanofibers. Pang Z; Fu J; Lv P; Huang F; Wei Q Sensors (Basel); 2014 Nov; 14(11):21453-65. PubMed ID: 25401687 [TBL] [Abstract][Full Text] [Related]
18. Adsorption and Flame Retardant Properties of Bio-Based Phytic Acid on Wool Fabric. Cheng XW; Guan JP; Chen G; Yang XH; Tang RC Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979213 [TBL] [Abstract][Full Text] [Related]
19. Development of Electrically Conductive Thermosetting Resin Composites through Optimizing the Thermal Doping of Polyaniline and Radical Polymerization Temperature. Takahashi K; Nagura K; Takamura M; Goto T; Takahashi T Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146020 [TBL] [Abstract][Full Text] [Related]
20. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. Zhang Y; Qiu M; Yu Y; Wen B; Cheng L ACS Appl Mater Interfaces; 2017 Jan; 9(1):809-818. PubMed ID: 27982585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]