These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 25440057)

  • 1. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO.
    Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL
    Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
    Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL
    J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.
    Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL
    Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria.
    Rajakovich LJ; Fu B; Bollenbach M; Balskus EP
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34362844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian-microbial cometabolism of L-carnitine in the context of atherosclerosis.
    Claus SP
    Cell Metab; 2014 Nov; 20(5):699-700. PubMed ID: 25440049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis.
    Skagen K; Trøseid M; Ueland T; Holm S; Abbas A; Gregersen I; Kummen M; Bjerkeli V; Reier-Nilsen F; Russell D; Svardal A; Karlsen TH; Aukrust P; Berge RK; Hov JE; Halvorsen B; Skjelland M
    Atherosclerosis; 2016 Apr; 247():64-9. PubMed ID: 26868510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
    Koeth RA; Wang Z; Levison BS; Buffa JA; Org E; Sheehy BT; Britt EB; Fu X; Wu Y; Li L; Smith JD; DiDonato JA; Chen J; Li H; Wu GD; Lewis JD; Warrier M; Brown JM; Krauss RM; Tang WH; Bushman FD; Lusis AJ; Hazen SL
    Nat Med; 2013 May; 19(5):576-85. PubMed ID: 23563705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.
    Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA
    Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oolong Tea Extract and Citrus Peel Polymethoxyflavones Reduce Transformation of l-Carnitine to Trimethylamine-
    Chen PY; Li S; Koh YC; Wu JC; Yang MJ; Ho CT; Pan MH
    J Agric Food Chem; 2019 Jul; 67(28):7869-7879. PubMed ID: 31287296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine.
    Servillo L; D'Onofrio N; Giovane A; Casale R; Cautela D; Castaldo D; Iannaccone F; Neglia G; Campanile G; Balestrieri ML
    Food Chem; 2018 Sep; 260():193-199. PubMed ID: 29699662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: Impact on cardiac allograft vasculopathy and acute rejection.
    Trøseid M; Mayerhofer CCK; Broch K; Arora S; Svardal A; Hov JR; Andreassen AK; Gude E; Karason K; Dellgren G; Berge RK; Gullestad L; Aukrust P; Ueland T
    J Heart Lung Transplant; 2019 Oct; 38(10):1097-1103. PubMed ID: 31301965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk.
    Zhu W; Buffa JA; Wang Z; Warrier M; Schugar R; Shih DM; Gupta N; Gregory JC; Org E; Fu X; Li L; DiDonato JA; Lusis AJ; Brown JM; Hazen SL
    J Thromb Haemost; 2018 Sep; 16(9):1857-1872. PubMed ID: 29981269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling the anaerobic gamma-butyrobetaine to TMA metabolic pathway in
    Dwidar M; Buffa JA; Wang Z; Santos A; Tittle AN; Fu X; Hajjar AM; DiDonato JA; Hazen SL
    mBio; 2023 Oct; 14(5):e0093723. PubMed ID: 37737636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women.
    Wang Z; Bergeron N; Levison BS; Li XS; Chiu S; Jia X; Koeth RA; Li L; Wu Y; Tang WHW; Krauss RM; Hazen SL
    Eur Heart J; 2019 Feb; 40(7):583-594. PubMed ID: 30535398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice.
    Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM
    J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of atherosclerosis susceptibility with gut microbial transplantation.
    Gregory JC; Buffa JA; Org E; Wang Z; Levison BS; Zhu W; Wagner MA; Bennett BJ; Li L; DiDonato JA; Lusis AJ; Hazen SL
    J Biol Chem; 2015 Feb; 290(9):5647-60. PubMed ID: 25550161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation.
    Panyod S; Wu WK; Chen PC; Chong KV; Yang YT; Chuang HL; Chen CC; Chen RA; Liu PY; Chung CH; Huang HS; Lin AY; Shen TD; Yang KC; Huang TF; Hsu CC; Ho CT; Kao HL; Orekhov AN; Wu MS; Sheen LY
    NPJ Biofilms Microbiomes; 2022 Jan; 8(1):4. PubMed ID: 35087050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metaorganismal nutrient metabolism as a basis of cardiovascular disease.
    Brown JM; Hazen SL
    Curr Opin Lipidol; 2014 Feb; 25(1):48-53. PubMed ID: 24362355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.