These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 25440844)

  • 1. Airborne bacterial dispersal during and after dressing and bed changes on burns patients.
    Bache SE; Maclean M; Gettinby G; Anderson JG; MacGregor SJ; Taggart I
    Burns; 2015 Feb; 41(1):39-48. PubMed ID: 25440844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying bacterial transfer from patients to staff during burns dressing and bed changes: implications for infection control.
    Bache SE; Maclean M; Gettinby G; Anderson JG; MacGregor SJ; Taggart I
    Burns; 2013 Mar; 39(2):220-8. PubMed ID: 23318217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A source isolator for infected patients.
    Babb JR; Bridges K; Lowbury EJ; Hodgson EM; Trexler PC
    J Hyg (Lond); 1976 Jun; 76(3):355-66. PubMed ID: 819573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous monitoring of aerial bioburden within intensive care isolation rooms and identification of high-risk activities.
    Dougall LR; Booth MG; Khoo E; Hood H; MacGregor SJ; Anderson JG; Timoshkin IV; Maclean M
    J Hosp Infect; 2019 Oct; 103(2):185-192. PubMed ID: 31145931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing airborne contamination levels in high-risk hospital areas using a novel mobile air-treatment unit.
    Bergeron V; Reboux G; Poirot JL; Laudinet N
    Infect Control Hosp Epidemiol; 2007 Oct; 28(10):1181-6. PubMed ID: 17828696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle.
    Barbut F; Yezli S; Mimoun M; Pham J; Chaouat M; Otter JA
    Burns; 2013 May; 39(3):395-403. PubMed ID: 22884127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The exposure method of treatment of burns in children].
    Bach CA; Richard P; Constant I; Vazquez MP; Conti E
    Ann Chir Plast Esthet; 2013 Aug; 58(4):373-8. PubMed ID: 22088802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial contamination of the hospital environment during wound dressing change.
    Sergent AP; Slekovec C; Pauchot J; Jeunet L; Bertrand X; Hocquet D; Pazart L; Talon D
    Orthop Traumatol Surg Res; 2012 Jun; 98(4):441-5. PubMed ID: 22560592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation care of infection-prone burn patients.
    Ransjö U
    Scand J Infect Dis Suppl; 1978; (11):1-46. PubMed ID: 97776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective isolation in a burns unit: the use of plastic isolators and air curtains.
    Lowbury EJ; Babb JR; Ford PM
    J Hyg (Lond); 1971 Dec; 69(4):529-46. PubMed ID: 5002642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study.
    Friberg B; Friberg S; Burman LG
    J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The infection risk of plastic wrap as an acute burns dressing.
    Liao AY; Andresen D; Martin HC; Harvey JG; Holland AJ
    Burns; 2014 May; 40(3):443-5. PubMed ID: 24018215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of jaw relaxation on pain anxiety during burn dressings: randomised clinical trial.
    Mohammadi Fakhar F; Rafii F; Jamshidi Orak R
    Burns; 2013 Feb; 39(1):61-7. PubMed ID: 22698840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne microorganisms associated with packaging glass sorting facilities.
    Pinto MJ; Veiga JM; Fernandes P; Ramos C; Gonçalves S; Velho MM; Guerreiro JS
    J Toxicol Environ Health A; 2015; 78(11):685-96. PubMed ID: 26039746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting bacterial populations based on airborne particulates: a study performed in nonlaminar flow operating rooms during joint arthroplasty surgery.
    Stocks GW; Self SD; Thompson B; Adame XA; O'Connor DP
    Am J Infect Control; 2010 Apr; 38(3):199-204. PubMed ID: 19913327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.
    von Vogelsang AC; Förander P; Arvidsson M; Löwenhielm P
    J Hosp Infect; 2018 Jul; 99(3):271-278. PubMed ID: 29580895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of toxin producing strains of Staphylococcus aureus in a pediatric burns unit.
    Khojasteh VJ; Edwards-Jones V; Childs C; Foster HA
    Burns; 2007 May; 33(3):334-40. PubMed ID: 17234351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of airborne microflora in a hospital ward within a period of one year.
    Augustowska M; Dutkiewicz J
    Ann Agric Environ Med; 2006; 13(1):99-106. PubMed ID: 16841880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of bioaerosol contamination with Aspergillus species before and after cleaning in rooms filtered with high-efficiency particulate air filters that house patients with hematologic malignancy.
    Lee LD; Berkheiser M; Jiang Y; Hackett B; Hachem RY; Chemaly RF; Raad II
    Infect Control Hosp Epidemiol; 2007 Sep; 28(9):1066-70. PubMed ID: 17932828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne Aspergillus contamination during hospital construction works: efficacy of protective measures.
    Fournel I; Sautour M; Lafon I; Sixt N; L'Ollivier C; Dalle F; Chavanet P; Couillaud G; Caillot D; Astruc K; Bonnin A; Aho-Glélé LS
    Am J Infect Control; 2010 Apr; 38(3):189-94. PubMed ID: 19923037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.