These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25441048)

  • 1. From the bench to modeling--R0 at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases.
    Ivanek R; Lahodny G
    Prev Vet Med; 2015 Feb; 118(2-3):196-206. PubMed ID: 25441048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease.
    Lahodny GE; Gautam R; Ivanek R
    J Biol Dyn; 2015; 9 Suppl 1():128-55. PubMed ID: 25198247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infectious disease transmission and behavioural allometry in wild mammals.
    Han BA; Park AW; Jolles AE; Altizer S
    J Anim Ecol; 2015 May; 84(3):637-646. PubMed ID: 25631200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission parameters of vector-borne infections.
    Desenclos JC
    Med Mal Infect; 2011 Nov; 41(11):588-93. PubMed ID: 21993137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and environmental transmission in Chronic Wasting Disease.
    Vasilyeva O; Oraby T; Lutscher F
    Math Biosci Eng; 2015 Feb; 12(1):209-31. PubMed ID: 25811337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical framework to identify invariant thresholds in infectious disease epidemiology.
    Gomes MGM; Gjini E; Lopes JS; Souto-Maior C; Rebelo C
    J Theor Biol; 2016 Apr; 395():97-102. PubMed ID: 26869215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.
    Garira W; Mathebula D; Netshikweta R
    Math Biosci; 2014 Oct; 256():58-78. PubMed ID: 25149595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity of the Basic Reproduction Number (R
    Delamater PL; Street EJ; Leslie TF; Yang YT; Jacobsen KH
    Emerg Infect Dis; 2019 Jan; 25(1):1-4. PubMed ID: 30560777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When does pathogen evolution maximize the basic reproductive number in well-mixed host-pathogen systems?
    Cortez MH
    J Math Biol; 2013 Dec; 67(6-7):1533-85. PubMed ID: 23070214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation and uncertainty quantification for an epidemic model.
    Capaldi A; Behrend S; Berman B; Smith J; Wright J; Lloyd AL
    Math Biosci Eng; 2012 Jul; 9(3):553-76. PubMed ID: 22881026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic matrix population models: growth rate, basic reproduction number, and entropy.
    Bacaër N
    Bull Math Biol; 2009 Oct; 71(7):1781-92. PubMed ID: 19412636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect transmission and the effect of seasonal pathogen inactivation on infectious disease periodicity.
    Robinson M; Drossinos Y; Stilianakis NI
    Epidemics; 2013 Jun; 5(2):111-21. PubMed ID: 23746804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproduction numbers for infections with free-living pathogens growing in the environment.
    Bani-Yaghoub M; Gautam R; Shuai Z; van den Driessche P; Ivanek R
    J Biol Dyn; 2012; 6():923-40. PubMed ID: 22881277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the epidemiological heterogeneity on the outbreak outcomes.
    Macacu A; Bicout DJ
    Math Biosci Eng; 2017 Jun; 14(3):735-754. PubMed ID: 28092961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.