These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25441418)

  • 1. In vitro monitoring of oxidative processes with self-aggregating gold nanoparticles using all-optical photoacoustic spectroscopy.
    Yasmin Z; Khachatryan E; Lee YH; Maswadi S; Glickman R; Nash KL
    Biosens Bioelectron; 2015 Feb; 64():676-82. PubMed ID: 25441418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interparticle interactions in glutathione mediated assembly of gold nanoparticles.
    Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ
    Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly.
    Stobiecka M; Coopersmith K; Hepel M
    J Colloid Interface Sci; 2010 Oct; 350(1):168-77. PubMed ID: 20591439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dispersion-Dominated Chromogenic Strategy for Colorimetric Sensing of Glutathione at the Nanomolar Level Using Gold Nanoparticles.
    Xianyu Y; Xie Y; Wang N; Wang Z; Jiang X
    Small; 2015 Nov; 11(41):5510-4. PubMed ID: 26313890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel core etching technique of gold nanoparticles for colorimetric dopamine detection.
    Lee HC; Chen TH; Tseng WL; Lin CH
    Analyst; 2012 Nov; 137(22):5352-7. PubMed ID: 23016153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione.
    He X; Zhong Z; Guo Y; Lv J; Xu J; Zhu M; Li Y; Liu H; Wang S; Zhu Y; Zhu D
    Langmuir; 2007 Aug; 23(17):8815-9. PubMed ID: 17637013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems.
    Shevchenko KG; Cherkasov VR; Tregubov AA; Nikitin PI; Nikitin MP
    Biosens Bioelectron; 2017 Feb; 88():3-8. PubMed ID: 27665167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.
    Iglesias E; Prado-Gotor R
    Phys Chem Chem Phys; 2015 Jan; 17(1):644-54. PubMed ID: 25407561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive detection of glucose in human serum with oligonucleotide modified gold nanoparticles by using dynamic light scattering technique.
    Miao X; Ling L; Shuai X
    Biosens Bioelectron; 2013 Mar; 41():880-3. PubMed ID: 23084753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies.
    Blakey I; Schiller TL; Merican Z; Fredericks PM
    Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis.
    Makhsin SR; Razak KA; Noordin R; Zakaria ND; Chun TS
    Nanotechnology; 2012 Dec; 23(49):495719. PubMed ID: 23164811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range.
    Li CM; Zhen SJ; Wang J; Li YF; Huang CZ
    Biosens Bioelectron; 2013 May; 43():366-71. PubMed ID: 23356994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized gold nanoparticles for the detection of arsenic in water.
    Domínguez-González R; González Varela L; Bermejo-Barrera P
    Talanta; 2014 Jan; 118():262-9. PubMed ID: 24274297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance biosensors incorporating gold nanoparticles.
    Bedford EE; Spadavecchia J; Pradier CM; Gu FX
    Macromol Biosci; 2012 Jun; 12(6):724-39. PubMed ID: 22416018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of biologically stable gold nanoparticles using imidazolium-based amino acid ionic liquids.
    Safavi A; Zeinali S; Yazdani M
    Amino Acids; 2012 Sep; 43(3):1323-30. PubMed ID: 22209864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.
    Fu X; Chen L; Li J
    Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.
    Wang Y; Ni Y
    Talanta; 2014 Feb; 119():320-30. PubMed ID: 24401421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.
    Bhuvana M; Narayanan JS; Dharuman V; Teng W; Hahn JH; Jayakumar K
    Biosens Bioelectron; 2013 Mar; 41():802-8. PubMed ID: 23141707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling.
    Basu S; Ghosh SK; Kundu S; Panigrahi S; Praharaj S; Pande S; Jana S; Pal T
    J Colloid Interface Sci; 2007 Sep; 313(2):724-34. PubMed ID: 17540397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.