These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2544145)

  • 1. Changes in membrane constituents and chemiluminescence in vitamin E-deficient red blood cells induced by the xanthine oxidase reaction.
    Yasuda H; Miki M; Takenaka Y; Tamai H; Mino M
    Arch Biochem Biophys; 1989 Jul; 272(1):81-7. PubMed ID: 2544145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiluminescence in vitamin E-deficient erythrocytes initiated by xanthine oxidase reaction, in relation to the accumulation of thiobarbituric acid reactive substances.
    Yasuda H; Tamai H; Miki M; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1986 Apr; 32(2):245-50. PubMed ID: 3020207
    [No Abstract]   [Full Text] [Related]  

  • 3. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells.
    Tamai H; Miki M; Mino M
    J Free Radic Biol Med; 1986; 2(1):49-56. PubMed ID: 3021841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminescence from vitamin E-deficient erythrocyte membranes induced by xanthine oxidase reaction.
    Yasuda H; Miki M; Takenaka Y; Tamai H; Mino M
    Basic Life Sci; 1988; 49():249-54. PubMed ID: 3250482
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of alpha-tocopherol as an antioxidant on the oxidation of membrane protein thiols induced by free radicals generated in different sites.
    Takenaka Y; Miki M; Yasuda H; Mino M
    Arch Biochem Biophys; 1991 Mar; 285(2):344-50. PubMed ID: 1897937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of alpha-tocopherol on oxidative hemolysis, as evaluated by impedance measurement.
    Maeda H; Yoshida H; Nakahari T; Imai Y; Tamai H; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1992 Feb; 38(1):1-14. PubMed ID: 1629781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of xanthine oxidase-derived oxidants with lipid and protein of human plasma.
    Radi R; Bush KM; Cosgrove TP; Freeman BA
    Arch Biochem Biophys; 1991 Apr; 286(1):117-25. PubMed ID: 1897941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of factors of favism on the protein and lipid components of rat erythrocyte membrane.
    D'Aquino M; Gaetani S; Spadoni MA
    Biochim Biophys Acta; 1983 Jun; 731(2):161-7. PubMed ID: 6849913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by alpha-tocopherol.
    Miki M; Tamai H; Mino M; Yamamoto Y; Niki E
    Arch Biochem Biophys; 1987 Nov; 258(2):373-80. PubMed ID: 3674881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-to-membrane transfer of tocopherol in red blood cells.
    Tanaka H; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1986 Oct; 32(5):463-74. PubMed ID: 3559757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1985 Jan; 236(1):238-51. PubMed ID: 2981506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of the aldehydic choline glycerophospholipids in human red blood cell membrane peroxidized with an azo initiator.
    Kawai Y; Ogamo A; Nakagawa Y
    J Biochem; 1999 Jul; 126(1):115-20. PubMed ID: 10393328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase.
    Fee JA; Bergamini R; Briggs RG
    Arch Biochem Biophys; 1975 Jul; 169(1):160-7. PubMed ID: 168815
    [No Abstract]   [Full Text] [Related]  

  • 15. Propranolol as xanthine oxidase inhibitor: implications for antioxidant activity.
    Janero DR; Lopez R; Pittman J; Burghardt B
    Life Sci; 1989; 44(21):1579-88. PubMed ID: 2543874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of vitamin E deficiency on some erythrocyte membrane properties.
    Kameda K; Imai M; Senjo M
    J Nutr Sci Vitaminol (Tokyo); 1985 Oct; 31(5):481-90. PubMed ID: 3935762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional antilipoperoxidant activities of alpha-tocopherol and ascorbic acid on membrane-like systems are potentiated by rutin.
    Nègre-Salvayre A; Affany A; Hariton C; Salvayre R
    Pharmacology; 1991; 42(5):262-72. PubMed ID: 1652140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lability of red blood cell membranes to lipid peroxidation: application to humans fed polyunsaturated lipids.
    Fraga CG; Tappel AL; Leibovitz BE; Kuypers F; Chiu D; Iacono JM; Kelley DS
    Lipids; 1990 Feb; 25(2):111-4. PubMed ID: 2329922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and effective method for hemolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis.
    Taniguchi M; Aikawa M; Sakagami T
    J Biochem; 1981 Mar; 89(3):795-800. PubMed ID: 6895220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical chain oxidation and hemolysis of erythrocytes by molecular oxygen and their inhibition by vitamin E.
    Yamamoto Y; Niki E; Kamiya Y; Miki M; Tamai H; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1986 Oct; 32(5):475-9. PubMed ID: 3559758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.