BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2544166)

  • 1. Protein phosphorylation and the two stages of pigment organelle dispersion in permeabilized xanthophores: organelle protein phosphorylation alone supports only the first stage.
    Yu FX; Wu BY; Taylor JD; Tchen TT
    Biochem Biophys Res Commun; 1989 Jun; 161(2):626-32. PubMed ID: 2544166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-dependent carotenoid droplet dispersion in permeabilized cultured goldfish xanthophores.
    Yu FX; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):139-46. PubMed ID: 2157551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase.
    Lynch TJ; Wu BY; Taylor JD; Tchen TT
    J Biol Chem; 1986 Mar; 261(9):4212-6. PubMed ID: 3005326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP-independent and cAMP-dependent protein phosphorylations by isolated goldfish xanthophore cytoskeletons: evidence for the association of cytoskeleton with a carotenoid droplet protein.
    Palazzo RE; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):21-9. PubMed ID: 2543507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the carotenoid droplet protein p57 by the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase and the effect of fluoride.
    Yang CF; Zeng ZC; Chou SC; Yu FX; Taylor JD; Tchen TT
    Pigment Cell Res; 1989; 2(5):408-13. PubMed ID: 2555810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the distribution of carotenoid droplets in goldfish xanthophores and possible implication to secretory processes.
    Tchen TT; Lo SJ; Lynch TJ; Palazzo RE; Peng G; Walker GR; Wu BY; Yu FX; Taylor JD
    Cell Motil Cytoskeleton; 1988; 10(1-2):143-52. PubMed ID: 2972398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of pigment organelle translocation. I. Phosphorylation of the organelle-associated protein p57.
    Lynch TJ; Taylor JD; Tchen TT
    J Biol Chem; 1986 Mar; 261(9):4204-11. PubMed ID: 3005325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial characterization of a carotenoid droplet ATPase and its possible significance in carotenoid droplet dispersion in goldfish xanthophores.
    Wu BY; Yu FX; Lynch TJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):147-55. PubMed ID: 2138933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of anterogin, a protein factor necessary for the dispersion of carotenoid droplets in permeabilized xanthophores of goldfish.
    Zeng ZC; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):485-90. PubMed ID: 2533883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine 3',5'-monophosphate-dependent phosphoproteins in human placenta.
    Moore JJ; Cardaman RC
    Endocrinology; 1985 Jan; 116(1):288-95. PubMed ID: 2981067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural immunogold localization of some organelle-transport relevant proteins in wholemounted permeabilized nonextracted goldfish xanthophores.
    Kimler VA; Taylor JD
    Pigment Cell Res; 1995 Apr; 8(2):75-82. PubMed ID: 7659680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging.
    Sammak PJ; Adams SR; Harootunian AT; Schliwa M; Tsien RY
    J Cell Biol; 1992 Apr; 117(1):57-72. PubMed ID: 1348251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2(+)-induced insulin secretion from electrically permeabilized islets. Loss of the Ca2(+)-induced secretory response is accompanied by loss of Ca2(+)-induced protein phosphorylation.
    Jones PM; Persaud SJ; Howell SL
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):973-8. PubMed ID: 1323277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second messenger-specific protein kinases in a salt-absorbing intestinal epithelium.
    Toskulkao C; Nash NT; Leach K; Rao MC
    Am J Physiol; 1990 May; 258(5 Pt 1):C879-88. PubMed ID: 2159231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium regulation of pigment transport in vitro.
    McNiven MA; Ward JB
    J Cell Biol; 1988 Jan; 106(1):111-25. PubMed ID: 2828377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic AMP-dependent protein phosphorylation in the rat anterior pituitary.
    Cain ST; Pryor JC; Nemeroff CB
    Synapse; 1990; 5(3):241-6. PubMed ID: 2160742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultured cell extracts support organelle movement on microtubules in vitro.
    Dabora SL; Sheetz MP
    Cell Motil Cytoskeleton; 1988; 10(4):482-95. PubMed ID: 3145153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of type II cAMP-dependent protein kinase in renal brush border membranes.
    Hammerman MR
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F659-66. PubMed ID: 3008577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on insulin-stimulated phosphorylation of acetyl-CoA carboxylase, ATP citrate lyase and other proteins in rat epididymal adipose tissue. Evidence for activation of a cyclic AMP-independent protein kinase.
    Brownsey RW; Edgell NJ; Hopkirk TJ; Denton RM
    Biochem J; 1984 Mar; 218(3):733-43. PubMed ID: 6144304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastric H+ secretion: histamine (cAMP-mediated) activation of protein phosphorylation.
    Malinowska DH; Sachs G; Cuppoletti J
    Biochim Biophys Acta; 1988 Oct; 972(1):95-109. PubMed ID: 2846075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.