These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 25442561)
1. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Nitschke U; Stengel DB Food Chem; 2015 Apr; 172():326-34. PubMed ID: 25442561 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry. Romarís-Hortas V; Bermejo-Barrera P; Moreda-Piñeiro A J Chromatogr A; 2013 Sep; 1309():33-40. PubMed ID: 23972456 [TBL] [Abstract][Full Text] [Related]
3. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Pawlik-Skowrońska B; Pirszel J; Brown MT Aquat Toxicol; 2007 Jul; 83(3):190-9. PubMed ID: 17532484 [TBL] [Abstract][Full Text] [Related]
4. Variability of iodine content in common commercially available edible seaweeds. Teas J; Pino S; Critchley A; Braverman LE Thyroid; 2004 Oct; 14(10):836-41. PubMed ID: 15588380 [TBL] [Abstract][Full Text] [Related]
6. An HPLC method for the quantification of sterols in edible seaweeds. Sánchez-Machado DI; López-Hernández J; Paseiro-Losada P; López-Cervantes J Biomed Chromatogr; 2004 Apr; 18(3):183-90. PubMed ID: 15103705 [TBL] [Abstract][Full Text] [Related]
7. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed. Romarís-Hortas V; Bermejo-Barrera P; Moreda-Piñeiro A J Chromatogr A; 2012 May; 1236():164-76. PubMed ID: 22440665 [TBL] [Abstract][Full Text] [Related]
8. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Vieira EF; Soares C; Machado S; Correia M; Ramalhosa MJ; Oliva-Teles MT; Paula Carvalho A; Domingues VF; Antunes F; Oliveira TAC; Morais S; Delerue-Matos C Food Chem; 2018 Dec; 269():264-275. PubMed ID: 30100434 [TBL] [Abstract][Full Text] [Related]
9. Dried green and purple lavers (Nori) contain substantial amounts of biologically active vitamin B(12) but less of dietary iodine relative to other edible seaweeds. Watanabe F; Takenaka S; Katsura H; Masumder SA; Abe K; Tamura Y; Nakano Y J Agric Food Chem; 1999 Jun; 47(6):2341-3. PubMed ID: 10794633 [TBL] [Abstract][Full Text] [Related]
10. Commercially available kelp and seaweed products - valuable iodine source or risk of excess intake? Aakre I; Solli DD; Markhus MW; Mæhre HK; Dahl L; Henjum S; Alexander J; Korneliussen PA; Madsen L; Kjellevold M Food Nutr Res; 2021; 65():. PubMed ID: 33889064 [TBL] [Abstract][Full Text] [Related]
11. Total and inorganic arsenic in fish, seafood and seaweeds--exposure assessment. Mania M; Rebeniak M; Szynal T; Wojciechowska-Mazurek M; Starska K; Ledzion E; Postupolski J Rocz Panstw Zakl Hig; 2015; 66(3):203-10. PubMed ID: 26400115 [TBL] [Abstract][Full Text] [Related]
12. Brown seaweed as a food ingredient contributing to an adequate but not excessive amount of iodine in the European diet. A case study with bread. Ballance S; Rieder A; Arlov Ø; Knutsen SH J Sci Food Agric; 2024 Nov; 104(14):8897-8906. PubMed ID: 38962938 [TBL] [Abstract][Full Text] [Related]
13. Risk assessment of iodine intake from the consumption of red seaweeds (Palmaria palmata and Chondrus crispus). Darias-Rosales J; Rubio C; Gutiérrez ÁJ; Paz S; Hardisson A Environ Sci Pollut Res Int; 2020 Dec; 27(36):45737-45741. PubMed ID: 32803579 [TBL] [Abstract][Full Text] [Related]
14. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Maehre HK; Malde MK; Eilertsen KE; Elvevoll EO J Sci Food Agric; 2014 Dec; 94(15):3281-90. PubMed ID: 24700148 [TBL] [Abstract][Full Text] [Related]
15. Seaweed proteins and amino acids as nutraceuticals. Černá M Adv Food Nutr Res; 2011; 64():297-312. PubMed ID: 22054957 [TBL] [Abstract][Full Text] [Related]
16. A simple ion chromatography method for inorganic anion analysis in edible seaweeds. Gómez-Ordóñez E; Alonso E; Rupérez P Talanta; 2010 Sep; 82(4):1313-7. PubMed ID: 20801334 [TBL] [Abstract][Full Text] [Related]
17. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Biancarosa I; Belghit I; Bruckner CG; Liland NS; Waagbø R; Amlund H; Heesch S; Lock EJ J Sci Food Agric; 2018 Mar; 98(5):2035-2042. PubMed ID: 29193189 [TBL] [Abstract][Full Text] [Related]
18. Analysis and occurrence of benzotriazole ultraviolet stabilisers in different species of seaweed. Pacheco-Juárez J; Montesdeoca-Esponda S; Torres-Padrón ME; Sosa-Ferrera Z; Santana-Rodríguez JJ Chemosphere; 2019 Dec; 236():124344. PubMed ID: 31310969 [TBL] [Abstract][Full Text] [Related]
19. Dietary exposure and risk assessment to trace elements and iodine in seaweeds. Ficheux AS; Boniou B; Durand G; Garrec RL; Pierre O; Roudot AC J Trace Elem Med Biol; 2023 Jul; 78():127187. PubMed ID: 37210921 [TBL] [Abstract][Full Text] [Related]
20. Low-level seaweed supplementation improves iodine status in iodine-insufficient women. Combet E; Ma ZF; Cousins F; Thompson B; Lean ME Br J Nutr; 2014 Sep; 112(5):753-61. PubMed ID: 25006699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]