These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25443579)

  • 1. Spinal cord injury impacts B cell production, homeostasis, and activation.
    Oropallo MA; Goenka R; Cancro MP
    Semin Immunol; 2014 Oct; 26(5):421-7. PubMed ID: 25443579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic spinal cord injury impairs primary antibody responses but spares existing humoral immunity in mice.
    Oropallo MA; Held KS; Goenka R; Ahmad SA; O'Neill PJ; Steward O; Lane TE; Cancro MP
    J Immunol; 2012 Jun; 188(11):5257-66. PubMed ID: 22523388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord injury, immunodepression, and antigenic challenge.
    Held KS; Lane TE
    Semin Immunol; 2014 Oct; 26(5):415-20. PubMed ID: 24747011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin 21 blockade modulates activated T- and B-cell homeostasis via B-cell activating factor pathway-mediated inhibition in a murine model of acute graft-versus-host disease.
    Lim JY; Park MJ; Im KI; Kim N; Park HS; Lee SH; Kim EK; Nam YS; Lee ES; Cho ML; Cho SG
    Exp Hematol; 2015 Jan; 43(1):23-31.e1-2. PubMed ID: 25246268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes.
    Wu B; Matic D; Djogo N; Szpotowicz E; Schachner M; Jakovcevski I
    Exp Neurol; 2012 Oct; 237(2):274-85. PubMed ID: 22868200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the intensity, level and phase of spinal cord injury on the proliferation of T cells and T-cell-dependent antibody reactions in rats.
    Ibarra A; Jiménez A; Cortes C; Correa D
    Spinal Cord; 2007 May; 45(5):380-6. PubMed ID: 16955070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis.
    Ankeny DP; Lucin KM; Sanders VM; McGaughy VM; Popovich PG
    J Neurochem; 2006 Nov; 99(4):1073-87. PubMed ID: 17081140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BLyS receptor signatures resolve homeostatically independent compartments among naïve and antigen-experienced B cells.
    Treml LS; Crowley JE; Cancro MP
    Semin Immunol; 2006 Oct; 18(5):297-304. PubMed ID: 16919470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system.
    Kipnis J; Mizrahi T; Hauben E; Shaked I; Shevach E; Schwartz M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15620-5. PubMed ID: 12429857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain.
    Skundric DS; Huston K; Shaw M; Tse HY; Raine CS
    Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review.
    Bao Y; Cao X
    J Autoimmun; 2014 Dec; 55():10-23. PubMed ID: 24794622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innate-like B cells and their rules of engagement.
    Baumgarth N
    Adv Exp Med Biol; 2013; 785():57-66. PubMed ID: 23456838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innate B Cells: the Archetype of Protective Immune Cells.
    Grasseau A; Boudigou M; Le Pottier L; Chriti N; Cornec D; Pers JO; Renaudineau Y; Hillion S
    Clin Rev Allergy Immunol; 2020 Feb; 58(1):92-106. PubMed ID: 31183788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Sleep Deprivation on Mice Bone Marrow and Spleen B Lymphopoiesis.
    Lungato L; Nogueira-Pedro A; Carvalho Dias C; Paredes-Gamero EJ; Tufik S; D'Almeida V
    J Cell Physiol; 2016 Jun; 231(6):1313-20. PubMed ID: 26517012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4.
    Nelissen S; Vangansewinkel T; Geurts N; Geboes L; Lemmens E; Vidal PM; Lemmens S; Willems L; Boato F; Dooley D; Pehl D; Pejler G; Maurer M; Metz M; Hendrix S
    Neurobiol Dis; 2014 Feb; 62():260-72. PubMed ID: 24075853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunological approaches to the treatment of spinal cord injury.
    Schwartz M
    BioDrugs; 2001; 15(9):585-93. PubMed ID: 11580302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential.
    Dorshkind K; Montecino-Rodriguez E
    Nat Rev Immunol; 2007 Mar; 7(3):213-9. PubMed ID: 17318232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The systemic response to CNS injury.
    Anthony DC; Couch Y
    Exp Neurol; 2014 Aug; 258():105-11. PubMed ID: 25017891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple routes to B-cell memory.
    Good-Jacobson KL; Tarlinton DM
    Int Immunol; 2012 Jul; 24(7):403-8. PubMed ID: 22451529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in immune cell phenotype and function after experimental spinal cord injury.
    Popovich PG; Stuckman S; Gienapp IE; Whitacre CC
    J Neurotrauma; 2001 Sep; 18(9):957-66. PubMed ID: 11565606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.