These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25443728)

  • 1. Integrated workflow for quantitative phosphoproteomic analysis of the selected brain structures in development of morphine dependence.
    Sucharski F; Noga MJ; Suder P; Kotlińska J; Silberring J
    Pharmacol Rep; 2014 Dec; 66(6):1003-10. PubMed ID: 25443728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.
    Collins MO; Wright JC; Jones M; Rayner JC; Choudhary JS
    J Proteomics; 2014 May; 103(100):1-14. PubMed ID: 24657495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of elemental mass spectrometry in phosphoproteomic applications.
    Maes E; Tirez K; Baggerman G; Valkenborg D; Schoofs L; Encinar JR; Mertens I
    Mass Spectrom Rev; 2016; 35(3):350-60. PubMed ID: 25139451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals.
    He M; Wang J; Herold S; Xi L; Schulze WX
    Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurement of phosphopeptides and proteins via stable isotope labeling in Arabidopsis and functional phosphoproteomic strategies.
    Li N
    Methods Mol Biol; 2012; 876():17-32. PubMed ID: 22576083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS.
    Moser K; White FM
    J Proteome Res; 2006 Jan; 5(1):98-104. PubMed ID: 16396499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid One-Pot Workflow for Sensitive Microscale Phosphoproteomics.
    Muneer G; Chen CS; Lee TT; Chen BY; Chen YJ
    J Proteome Res; 2024 Aug; 23(8):3294-3309. PubMed ID: 39038167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics in cancer.
    Harsha HC; Pandey A
    Mol Oncol; 2010 Dec; 4(6):482-95. PubMed ID: 20937571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Workflow for Proteomics and Phosphoproteomics With Limited Tissue Samples.
    Hu M; Wang Y
    Curr Protoc; 2024 Apr; 4(4):e1028. PubMed ID: 38646944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope labeling-based two-step derivatization strategy for analysis of Phosphopeptides.
    Zou L; Wang Y; Wang X; Yang X; Zhang Q; Zheng Q
    J Proteomics; 2024 Apr; 297():105128. PubMed ID: 38382841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics.
    Robertson J; Humphries JD; Paul NR; Warwood S; Knight D; Byron A; Humphries MJ
    Methods Mol Biol; 2017; 1636():235-251. PubMed ID: 28730483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phosphoproteomic analysis of mice with liver fibrosis by DIA mass spectrometry analysis with PRM verification.
    Zhang L; Wu F; Fan C; Huang S; Ma Y; Chen S; Zhang J; Jiang H
    J Proteomics; 2023 Jan; 271():104768. PubMed ID: 36336261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway.
    Cantin GT; Venable JD; Cociorva D; Yates JR
    J Proteome Res; 2006 Jan; 5(1):127-34. PubMed ID: 16396503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking common quantification strategies for large-scale phosphoproteomics.
    Hogrebe A; von Stechow L; Bekker-Jensen DB; Weinert BT; Kelstrup CD; Olsen JV
    Nat Commun; 2018 Mar; 9(1):1045. PubMed ID: 29535314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.