These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25443728)

  • 21. An Integrated Workflow for Global, Glyco-, and Phospho-proteomic Analysis of Tumor Tissues.
    Zhou Y; Lih TM; Yang G; Chen SY; Chen L; Chan DW; Zhang H; Li QK
    Anal Chem; 2020 Jan; 92(2):1842-1849. PubMed ID: 31859488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides.
    Cho KC; Chen L; Hu Y; Schnaubelt M; Zhang H
    ACS Chem Biol; 2019 Jan; 14(1):58-66. PubMed ID: 30525447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows.
    Aasebø E; Mjaavatten O; Vaudel M; Farag Y; Selheim F; Berven F; Bruserud Ø; Hernandez-Valladares M
    J Proteomics; 2016 Aug; 145():214-225. PubMed ID: 27107777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS.
    Li N; Zhan X
    Mass Spectrom Rev; 2020 Sep; 39(5-6):471-498. PubMed ID: 32020673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.
    Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells.
    Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA
    Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics.
    Nabetani T; Kim YJ; Watanabe M; Ohashi Y; Kamiguchi H; Hirabayashi Y
    Proteomics; 2009 Dec; 9(24):5525-33. PubMed ID: 19834909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples.
    Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D
    Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Advances in analysis techniques of phosphoproteome].
    Yang J; Zou QM; Cai SX; Guo G; Zhu YH
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):244-8. PubMed ID: 15966331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics.
    Dreier RF; Ahrné E; Broz P; Schmidt A
    J Proteome Res; 2019 Jan; 18(1):493-507. PubMed ID: 30387612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of brain nuclear phosphoproteins identifies developmentally regulated phosphorylation events.
    Liao L; McClatchy DB; Park SK; Xu T; Lu B; Yates JR
    J Proteome Res; 2008 Nov; 7(11):4743-55. PubMed ID: 18823140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted In-Depth Quantification of Signaling Using Label-Free Mass Spectrometry.
    Cutillas PR
    Methods Enzymol; 2017; 585():245-268. PubMed ID: 28109432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains.
    Kim SY; Chudapongse N; Lee SM; Levin MC; Oh JT; Park HJ; Ho IK
    Brain Res Mol Brain Res; 2005 Jan; 133(1):58-70. PubMed ID: 15661365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MS3-IDQ: Utilizing MS3 Spectra beyond Quantification Yields Increased Coverage of the Phosphoproteome in Isobaric Tag Experiments.
    Berberich MJ; Paulo JA; Everley RA
    J Proteome Res; 2018 Apr; 17(4):1741-1747. PubMed ID: 29461835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.