These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 25443848)
1. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Chai L; Li Y; Chen S; Perl A; Zhao F; Ma H Plant Sci; 2014 Dec; 229():215-224. PubMed ID: 25443848 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Wang Z; Zhao F; Zhao X; Ge H; Chai L; Chen S; Perl A; Ma H Proteomics; 2012 Jan; 12(1):86-94. PubMed ID: 22095673 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic study of pedicels from GA Meneses M; García-Rojas M; Muñoz-Espinoza C; Carrasco-Valenzuela T; Defilippi B; González-Agüero M; Meneses C; Infante R; Hinrichsen P BMC Plant Biol; 2020 Feb; 20(1):66. PubMed ID: 32041534 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide identification and characterization of gibberellin metabolic and signal transduction (GA MST) pathway mediating seed and berry development (SBD) in grape (Vitis vinifera L.). Wang W; Bai Y; Koilkonda P; Guan L; Zhuge Y; Wang X; Liu Z; Jia H; Wang C; Fang J BMC Plant Biol; 2020 Aug; 20(1):384. PubMed ID: 32825825 [TBL] [Abstract][Full Text] [Related]
6. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). Wang P; Xuan X; Su Z; Wang W; Abdelrahman M; Jiu S; Zhang X; Liu Z; Wang X; Wang C; Fang J BMC Plant Biol; 2021 Sep; 21(1):442. PubMed ID: 34587914 [TBL] [Abstract][Full Text] [Related]
7. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development. Shiri Y; Solouki M; Ebrahimie E; Emamjomeh A; Zahiri J Genomics; 2020 Jan; 112(1):820-830. PubMed ID: 31136791 [TBL] [Abstract][Full Text] [Related]
8. Regulatory mechanism of GA Li WF; Zhou Q; Ma ZH; Zuo CW; Chu MY; Mao J; Chen BH Plant Physiol Biochem; 2024 May; 210():108543. PubMed ID: 38554534 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. Muñoz-Espinoza C; Di Genova A; Correa J; Silva R; Maass A; González-Agüero M; Orellana A; Hinrichsen P BMC Plant Biol; 2016 Apr; 16():104. PubMed ID: 27118480 [TBL] [Abstract][Full Text] [Related]
10. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. Cheng C; Jiao C; Singer SD; Gao M; Xu X; Zhou Y; Li Z; Fei Z; Wang Y; Wang X BMC Genomics; 2015 Feb; 16(1):128. PubMed ID: 25888129 [TBL] [Abstract][Full Text] [Related]
11. Exogenous gibberellic acid application induces the overexpression of key genes for pedicel lignification and an increase in berry drop in table grape. García-Rojas M; Meneses M; Oviedo K; Carrasco C; Defilippi B; González-Agüero M; León G; Hinrichsen P Plant Physiol Biochem; 2018 May; 126():32-38. PubMed ID: 29499433 [TBL] [Abstract][Full Text] [Related]
13. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Dal Santo S; Tucker MR; Tan HT; Burbidge CA; Fasoli M; Böttcher C; Boss PK; Pezzotti M; Davies C Plant Mol Biol; 2020 May; 103(1-2):91-111. PubMed ID: 32043226 [TBL] [Abstract][Full Text] [Related]
14. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera. Acheampong AK; Hu J; Rotman A; Zheng C; Halaly T; Takebayashi Y; Jikumaru Y; Kamiya Y; Lichter A; Sun TP; Or E J Exp Bot; 2015 Mar; 66(5):1463-76. PubMed ID: 25588745 [TBL] [Abstract][Full Text] [Related]
17. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
18. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843 [TBL] [Abstract][Full Text] [Related]
19. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544 [TBL] [Abstract][Full Text] [Related]
20. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Koyama K; Sadamatsu K; Goto-Yamamoto N Funct Integr Genomics; 2010 Aug; 10(3):367-81. PubMed ID: 19841954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]