BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25443954)

  • 1. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.
    Elias AA; Cisneros GA
    Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I.
    Graham SE; Syeda F; Cisneros GA
    Biochemistry; 2012 Mar; 51(12):2569-78. PubMed ID: 22397306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme free energy of stabilization of Taq DNA polymerase.
    Schoeffler AJ; Joubert AM; Peng F; Khan F; Liu CC; LiCata VJ
    Proteins; 2004 Mar; 54(4):616-21. PubMed ID: 14997557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix.
    Suzuki M; Yoshida S; Adman ET; Blank A; Loeb LA
    J Biol Chem; 2000 Oct; 275(42):32728-35. PubMed ID: 10906120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
    Brown HS; Licata VJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Yang Y; LiCata VJ
    Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I.
    Suzuki M; Avicola AK; Hood L; Loeb LA
    J Biol Chem; 1997 Apr; 272(17):11228-35. PubMed ID: 9111024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display.
    Vichier-Guerre S; Ferris S; Auberger N; Mahiddine K; Jestin JL
    Angew Chem Int Ed Engl; 2006 Sep; 45(37):6133-7. PubMed ID: 16838276
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases.
    Karantzeni I; Ruiz C; Liu CC; Licata VJ
    Biochem J; 2003 Sep; 374(Pt 3):785-92. PubMed ID: 12786603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of DNA polymerase I from an extreme thermophile, Thermus scotoductus strain K1.
    Saghatelyan A; Panosyan H; Trchounian A; Birkeland NK
    Microbiologyopen; 2021 Jan; 10(1):e1149. PubMed ID: 33415847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular diversity and catalytic activity of Thermus DNA polymerases.
    Gibbs MD; Reeves RA; Mandelman D; Mi Q; Lee J; Bergquist PL
    Extremophiles; 2009 Sep; 13(5):817-26. PubMed ID: 19597696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal.
    Kiefer JR; Mao C; Braman JC; Beese LS
    Nature; 1998 Jan; 391(6664):304-7. PubMed ID: 9440698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase.
    Tindall KR; Kunkel TA
    Biochemistry; 1988 Aug; 27(16):6008-13. PubMed ID: 2847780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I.
    Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M
    Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.