These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 25443954)
1. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I. Elias AA; Cisneros GA Adv Protein Chem Struct Biol; 2014; 96():39-75. PubMed ID: 25443954 [TBL] [Abstract][Full Text] [Related]
2. Computational prediction of residues involved in fidelity checking for DNA synthesis in DNA polymerase I. Graham SE; Syeda F; Cisneros GA Biochemistry; 2012 Mar; 51(12):2569-78. PubMed ID: 22397306 [TBL] [Abstract][Full Text] [Related]
3. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases. Datta K; LiCata VJ J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277 [TBL] [Abstract][Full Text] [Related]
4. Extreme free energy of stabilization of Taq DNA polymerase. Schoeffler AJ; Joubert AM; Peng F; Khan F; Liu CC; LiCata VJ Proteins; 2004 Mar; 54(4):616-21. PubMed ID: 14997557 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914 [TBL] [Abstract][Full Text] [Related]
6. Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix. Suzuki M; Yoshida S; Adman ET; Blank A; Loeb LA J Biol Chem; 2000 Oct; 275(42):32728-35. PubMed ID: 10906120 [TBL] [Abstract][Full Text] [Related]
7. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases. Brown HS; Licata VJ Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145 [TBL] [Abstract][Full Text] [Related]
8. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Yang Y; LiCata VJ Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429 [TBL] [Abstract][Full Text] [Related]
9. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. Xu C; Maxwell BA; Suo Z J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550 [TBL] [Abstract][Full Text] [Related]
10. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I. Suzuki M; Avicola AK; Hood L; Loeb LA J Biol Chem; 1997 Apr; 272(17):11228-35. PubMed ID: 9111024 [TBL] [Abstract][Full Text] [Related]
11. A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Vichier-Guerre S; Ferris S; Auberger N; Mahiddine K; Jestin JL Angew Chem Int Ed Engl; 2006 Sep; 45(37):6133-7. PubMed ID: 16838276 [No Abstract] [Full Text] [Related]
12. Comparative thermal denaturation of Thermus aquaticus and Escherichia coli type 1 DNA polymerases. Karantzeni I; Ruiz C; Liu CC; Licata VJ Biochem J; 2003 Sep; 374(Pt 3):785-92. PubMed ID: 12786603 [TBL] [Abstract][Full Text] [Related]
13. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase. Villbrandt B; Sobek H; Frey B; Schomburg D Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability. Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of DNA polymerase I from an extreme thermophile, Thermus scotoductus strain K1. Saghatelyan A; Panosyan H; Trchounian A; Birkeland NK Microbiologyopen; 2021 Jan; 10(1):e1149. PubMed ID: 33415847 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of Thermus aquaticus DNA polymerase. Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814 [TBL] [Abstract][Full Text] [Related]
17. Molecular diversity and catalytic activity of Thermus DNA polymerases. Gibbs MD; Reeves RA; Mandelman D; Mi Q; Lee J; Bergquist PL Extremophiles; 2009 Sep; 13(5):817-26. PubMed ID: 19597696 [TBL] [Abstract][Full Text] [Related]
18. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Kiefer JR; Mao C; Braman JC; Beese LS Nature; 1998 Jan; 391(6664):304-7. PubMed ID: 9440698 [TBL] [Abstract][Full Text] [Related]
19. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Tindall KR; Kunkel TA Biochemistry; 1988 Aug; 27(16):6008-13. PubMed ID: 2847780 [TBL] [Abstract][Full Text] [Related]
20. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I. Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]