These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2544484)

  • 1. A cation/proton antiport activity in Acholeplasma laidlawii.
    Lelong I; Shirvan MH; Rottem S
    FEMS Microbiol Lett; 1989 May; 50(1-2):71-6. PubMed ID: 2544484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp.
    Kitada M; Onda K; Horikoshi K
    J Bacteriol; 1989 Apr; 171(4):1879-84. PubMed ID: 2539355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp.
    Kitada M; Horikoshi K
    J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Feb; 23(5):1015-22. PubMed ID: 6324854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic properties of Na(+) -H(+) antiport in Escherichia coli membrane vesicles: Effects of imposed electrical potential, proton gradient, and internal pH.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Oct; 23(22):5288-94. PubMed ID: 21128368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation/proton antiport systems in Escherichia coli. Solubilization and reconstitution of delta pH-driven sodium/proton and calcium/proton antiporters.
    Nakamura T; Hsu C; Rosen BP
    J Biol Chem; 1986 Jan; 261(2):678-83. PubMed ID: 3001076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques.
    Mahajan S; Lewis RN; George R; Sykes BD; McElhaney RN
    J Bacteriol; 1988 Dec; 170(12):5739-46. PubMed ID: 2973459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Na+/H+ and Cl-/OH- exchange in rat jejunal brush border membrane vesicles: studies with acridine orange.
    Cassano G; Murer H
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():143-7. PubMed ID: 6087849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-H+ antiporter of rat colonic basolateral membrane vesicles.
    Dudeja PK; Foster ES; Brasitus TA
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G624-32. PubMed ID: 2552827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+/H+ antiporter of brush border vesicles: studies with acridine orange uptake.
    Warnock DG; Reenstra WW; Yee VJ
    Am J Physiol; 1982 Jun; 242(6):F733-9. PubMed ID: 6283903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two cholesterol pools in Acholeplasma laidlawii membranes.
    Davis PJ; Efrati H; Raxin S; Rottem S
    FEBS Lett; 1984 Sep; 175(1):51-4. PubMed ID: 6479337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum.
    Shirvan MH; Schuldiner S; Rottem S
    J Bacteriol; 1989 Aug; 171(8):4410-6. PubMed ID: 2753860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological role and membrane lipid modulation of the membrane-bound (Mg2+, na+)-adenosine triphosphatase activity in Acholeplasma laidlawii.
    Jinks DC; Silvius JR; McElhaney RN
    J Bacteriol; 1978 Dec; 136(3):1027-36. PubMed ID: 31351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid distribution in Acholeplasma laidlawii membrane. A study using the lactoperoxidase-mediated iodination.
    Gross Z; Rottem S
    Biochim Biophys Acta; 1979 Aug; 555(3):547-52. PubMed ID: 486468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of membrane vesicles from Acholeplasma laidlawii. II. Kinetic characteristics and specificity of glucose transport system.
    Panchenko LF; Fedotov NS; Tarshis MA
    Folia Microbiol (Praha); 1975; 20(6):480-7. PubMed ID: 286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ and H+ transport in human jejunal brush-border membrane vesicles.
    Kleinman JG; Harig JM; Barry JA; Ramaswamy K
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G206-11. PubMed ID: 2841867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton motive force and Na+/H+ antiport in a moderate halophile.
    Hamaide F; Kushner DJ; Sprott GD
    J Bacteriol; 1983 Nov; 156(2):537-44. PubMed ID: 6313606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential fluorescence labelling with 5-dimethyl-aminonaphthalene-1-sulfonyl chloride of intact cells and isolated membranes in Salmonella typhimurium and Acholeplasma laidlawii.
    Schindler PR; Teuber M
    Arch Microbiol; 1975; 102(1):29-33. PubMed ID: 235245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lipid composition of Acholeplasma laidlawii cells].
    Abaeva TP; Dobrynina OV; Tarshis MA
    Mikrobiologiia; 1976; 45():554-6. PubMed ID: 1004257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.