These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25444886)

  • 1. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry.
    Wall DM; Allen E; Straccialini B; O'Kiely P; Murphy JD
    Bioresour Technol; 2014 Dec; 173():422-428. PubMed ID: 25444886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential for biomethane from grass and slurry to satisfy renewable energy targets.
    Wall DM; O'Kiely P; Murphy JD
    Bioresour Technol; 2013 Dec; 149():425-31. PubMed ID: 24135566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.
    Wall DM; Allen E; Straccialini B; O'Kiely P; Murphy JD
    Bioresour Technol; 2014 Nov; 172():349-355. PubMed ID: 25280042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.
    Tabassum MR; Wall DM; Murphy JD
    Bioresour Technol; 2016 Nov; 219():228-238. PubMed ID: 27494104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased loading rates and specific methane yields facilitated by digesting grass silage at thermophilic rather than mesophilic temperatures.
    Voelklein MA; Rusmanis D; Murphy JD
    Bioresour Technol; 2016 Sep; 216():486-93. PubMed ID: 27268433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system.
    Orozco AM; Nizami AS; Murphy JD; Groom E
    Bioresour Technol; 2013 Sep; 143():117-25. PubMed ID: 23792661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate.
    Jagadabhi PS; Lehtomäki A; Rintala J
    Environ Technol; 2008 Oct; 29(10):1085-93. PubMed ID: 18942576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.
    Camarillo MK; Stringfellow WT; Spier CL; Hanlon JS; Domen JK
    J Environ Manage; 2013 Oct; 128():233-42. PubMed ID: 23747374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage.
    Wall DM; Straccialini B; Allen E; Nolan P; Herrmann C; O'Kiely P; Murphy JD
    Bioresour Technol; 2015 Sep; 192():266-71. PubMed ID: 26038332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch and continuous biogas production from grass silage liquor.
    Abu-Dahrieh J; Orozco A; Groom E; Rooney D
    Bioresour Technol; 2011 Dec; 102(23):10922-8. PubMed ID: 21993325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1.
    Thamsiriroj T; Murphy JD
    Bioresour Technol; 2011 Jan; 102(2):948-59. PubMed ID: 20943383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.
    Hagelqvist A; Granström K
    Environ Technol; 2016 Aug; 37(16):2113-23. PubMed ID: 26776302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage.
    Xie S; Wu G; Lawlor PG; Frost JP; Zhan X
    Bioresour Technol; 2012 Jan; 104():289-97. PubMed ID: 22154583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1--Performance and operating limits.
    Usack JG; Angenent LT
    Water Res; 2015 Dec; 87():446-57. PubMed ID: 26054695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of on-demand biogas production by using sugar beet silage.
    Ahmed S; Kazda M
    Anaerobe; 2017 Aug; 46():114-121. PubMed ID: 28465255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of increasing the organic loading rate on the co-digestion and mono-digestion of cattle slurry and maize.
    Cornell M; Banks CJ; Heaven S
    Water Sci Technol; 2012; 66(11):2336-42. PubMed ID: 23032762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.
    Fjørtoft K; Morken J; Hanssen JF; Briseid T
    Bioresour Technol; 2014 Oct; 169():72-79. PubMed ID: 25033326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel.
    Allen E; Wall DM; Herrmann C; Murphy JD
    Bioresour Technol; 2014 Oct; 170():436-444. PubMed ID: 25164335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage.
    Nizami AS; Murphy JD
    Environ Sci Technol; 2011 Sep; 45(17):7561-9. PubMed ID: 21786758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate.
    Scherer P; Lehmann K; Schmidt O; Demirel B
    Biotechnol Bioeng; 2009 Feb; 102(3):736-48. PubMed ID: 18988261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.