BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25445262)

  • 1. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.
    Sun ZH; Xiao Y; Sietsma J; Agterhuis H; Visser G; Yang Y
    Waste Manag; 2015 Jan; 35():227-35. PubMed ID: 25445262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.
    Sun ZH; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Waste Manag; 2016 Nov; 57():140-148. PubMed ID: 27021695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources.
    Oguchi M; Murakami S; Sakanakura H; Kida A; Kameya T
    Waste Manag; 2011; 31(9-10):2150-60. PubMed ID: 21683566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27445-27456. PubMed ID: 28980132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on characteristics of printed circuit board liberation and its crushed products.
    Quan C; Li A; Gao N
    Waste Manag Res; 2012 Nov; 30(11):1178-86. PubMed ID: 22956523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of sugarcane bagasse ash waste in the production of clay bricks.
    Faria KC; Gurgel RF; Holanda JN
    J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New characterisation method of electrical and electronic equipment wastes (WEEE).
    Menad N; Guignot S; van Houwelingen JA
    Waste Manag; 2013 Mar; 33(3):706-13. PubMed ID: 22784477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.
    Itai T; Otsuka M; Asante KA; Muto M; Opoku-Ankomah Y; Ansa-Asare OD; Tanabe S
    Sci Total Environ; 2014 Feb; 470-471():707-16. PubMed ID: 24184547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.
    Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD
    Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of lead-recycling facility emissions at various workplaces: major insights for sanitary risks assessment.
    Uzu G; Sobanska S; Sarret G; Sauvain JJ; Pradère P; Dumat C
    J Hazard Mater; 2011 Feb; 186(2-3):1018-27. PubMed ID: 21211904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mechanochemistry to metal recovery from second-hand resources: a technical overview.
    Ou Z; Li J; Wang Z
    Environ Sci Process Impacts; 2015 Sep; 17(9):1522-30. PubMed ID: 26283597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.
    Oguchi M; Sakanakura H; Terazono A; Takigami H
    Waste Manag; 2012 Jan; 32(1):96-103. PubMed ID: 21963338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards.
    Wang F; Zhao Y; Zhang T; Duan C; Wang L
    Waste Manag; 2015 Sep; 43():434-41. PubMed ID: 26117419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.
    Palmieri R; Bonifazi G; Serranti S
    Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.
    Flandinet L; Tedjar F; Ghetta V; Fouletier J
    J Hazard Mater; 2012 Apr; 213-214():485-90. PubMed ID: 22398030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.