These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
774 related articles for article (PubMed ID: 25445270)
1. Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp. Nigam D; Kumar S; Mishra DC; Rai A; Smita S; Saha A Gene; 2015 Jan; 555(2):127-39. PubMed ID: 25445270 [TBL] [Abstract][Full Text] [Related]
3. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296 [TBL] [Abstract][Full Text] [Related]
4. Salt-responsive genes in rice revealed by cDNA microarray analysis. Chao DY; Luo YH; Shi M; Luo D; Lin HX Cell Res; 2005 Oct; 15(10):796-810. PubMed ID: 16246269 [TBL] [Abstract][Full Text] [Related]
6. Topological characteristics of target genes regulated by abiotic-stress-responsible miRNAs in a rice interactome network. Zhang L; Xuan H; Zuo Y; Xu G; Wang P; Song Y; Zhang S Funct Integr Genomics; 2016 May; 16(3):243-51. PubMed ID: 26830287 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Nakashima K; Tran LS; Van Nguyen D; Fujita M; Maruyama K; Todaka D; Ito Y; Hayashi N; Shinozaki K; Yamaguchi-Shinozaki K Plant J; 2007 Aug; 51(4):617-30. PubMed ID: 17587305 [TBL] [Abstract][Full Text] [Related]
8. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics. Naika M; Shameer K; Sowdhamini R Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342 [TBL] [Abstract][Full Text] [Related]
9. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Seo JS; Joo J; Kim MJ; Kim YK; Nahm BH; Song SI; Cheong JJ; Lee JS; Kim JK; Choi YD Plant J; 2011 Mar; 65(6):907-21. PubMed ID: 21332845 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Cho HY; Lee C; Hwang SG; Park YC; Lim HL; Jang CS Gene; 2014 Nov; 552(1):98-105. PubMed ID: 25218040 [TBL] [Abstract][Full Text] [Related]
11. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Davletova S; Schlauch K; Coutu J; Mittler R Plant Physiol; 2005 Oct; 139(2):847-56. PubMed ID: 16183833 [TBL] [Abstract][Full Text] [Related]
12. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. Mutum RD; Balyan SC; Kansal S; Agarwal P; Kumar S; Kumar M; Raghuvanshi S FEBS J; 2013 Apr; 280(7):1717-30. PubMed ID: 23399101 [TBL] [Abstract][Full Text] [Related]
13. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374 [TBL] [Abstract][Full Text] [Related]
14. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related]
15. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice. Li X; Hou S; Gao Q; Zhao P; Chen S; Qi D; Lee BH; Cheng L; Liu G Plant Cell Physiol; 2013 Jul; 54(7):1172-85. PubMed ID: 23695503 [TBL] [Abstract][Full Text] [Related]
16. Stress-responsive microRNAs in Populus. Lu S; Sun YH; Chiang VL Plant J; 2008 Jul; 55(1):131-51. PubMed ID: 18363789 [TBL] [Abstract][Full Text] [Related]
17. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa). Qin J; Ma X; Tang Z; Meng Y Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839 [TBL] [Abstract][Full Text] [Related]
18. Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms. Santos AP; Serra T; Figueiredo DD; Barros P; Lourenço T; Chander S; Oliveira MM; Saibo NJ OMICS; 2011 Dec; 15(12):839-57. PubMed ID: 22136664 [TBL] [Abstract][Full Text] [Related]
19. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289 [TBL] [Abstract][Full Text] [Related]
20. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Kant P; Gordon M; Kant S; Zolla G; Davydov O; Heimer YM; Chalifa-Caspi V; Shaked R; Barak S Plant Cell Environ; 2008 Jun; 31(6):697-714. PubMed ID: 18182014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]