These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
740 related articles for article (PubMed ID: 25445518)
1. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518 [TBL] [Abstract][Full Text] [Related]
2. Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Wang H; Xiao Y; Wang H; Sang Z; Han X; Ren S; Du R; Shi X; Xie Y Int J Pharm; 2019 Jul; 566():67-76. PubMed ID: 31125715 [TBL] [Abstract][Full Text] [Related]
3. Nanosuspensions Containing Oridonin/HP-β-Cyclodextrin Inclusion Complexes for Oral Bioavailability Enhancement via Improved Dissolution and Permeability. Zhang X; Zhang T; Lan Y; Wu B; Shi Z AAPS PharmSciTech; 2016 Apr; 17(2):400-8. PubMed ID: 26187778 [TBL] [Abstract][Full Text] [Related]
4. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Liu M; Hong C; Yao Y; Shen H; Ji G; Li G; Xie Y Eur J Pharm Biopharm; 2016 Oct; 107():151-9. PubMed ID: 27395394 [TBL] [Abstract][Full Text] [Related]
5. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Liu P; Rong X; Laru J; van Veen B; Kiesvaara J; Hirvonen J; Laaksonen T; Peltonen L Int J Pharm; 2011 Jun; 411(1-2):215-22. PubMed ID: 21458552 [TBL] [Abstract][Full Text] [Related]
6. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying. Lai F; Pini E; Corrias F; Perricci J; Manconi M; Fadda AM; Sinico C Int J Pharm; 2014 Jun; 467(1-2):27-33. PubMed ID: 24680963 [TBL] [Abstract][Full Text] [Related]
7. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
8. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Freag MS; Elnaggar YS; Abdallah OY Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765 [TBL] [Abstract][Full Text] [Related]
9. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Ahuja BK; Jena SK; Paidi SK; Bagri S; Suresh S Int J Pharm; 2015 Jan; 478(2):540-52. PubMed ID: 25490182 [TBL] [Abstract][Full Text] [Related]
10. Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement. Gera S; Talluri S; Rangaraj N; Sampathi S AAPS PharmSciTech; 2017 Nov; 18(8):3151-3162. PubMed ID: 28534300 [TBL] [Abstract][Full Text] [Related]
11. D-Alpha-tocopherol acid polyethylene glycol 1000 succinate, an effective stabilizer during solidification transformation of baicalin nanosuspensions. Yue PF; Wan J; Wang Y; Li Y; Ma YQ; Yang M; Hu PY; Yuan HL; Wang CH Int J Pharm; 2013 Feb; 443(1-2):279-87. PubMed ID: 23291447 [TBL] [Abstract][Full Text] [Related]
12. Nanoprecipitation with sonication for enhancement of oral bioavailability of furosemide. Sahu BP; Das MK Acta Pol Pharm; 2014; 71(1):129-37. PubMed ID: 24779201 [TBL] [Abstract][Full Text] [Related]
13. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
14. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Wang L; Hao Y; Liu N; Ma M; Yin Z; Zhang X Drug Dev Ind Pharm; 2012 Nov; 38(11):1381-9. PubMed ID: 22300415 [TBL] [Abstract][Full Text] [Related]
15. Preparation, characterization and in vivo evaluation of amorphous tacrolimus nanosuspensions produced using CO2-assisted in situ nanoamorphization method. Wang Y; Han X; Wang J; Wang Y Int J Pharm; 2016 May; 505(1-2):35-41. PubMed ID: 27034003 [TBL] [Abstract][Full Text] [Related]
16. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach. Karakucuk A; Celebi N; Teksin ZS Eur J Pharm Sci; 2016 Dec; 95():111-121. PubMed ID: 27181836 [TBL] [Abstract][Full Text] [Related]
17. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Xia D; Quan P; Piao H; Piao H; Sun S; Yin Y; Cui F Eur J Pharm Sci; 2010 Jul; 40(4):325-34. PubMed ID: 20417274 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Aditya NP; Yang H; Kim S; Ko S Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible riboflavin laurate long-acting injectable nanosuspensions allowing sterile filtration. Hu X; Lin X; Gu Y; Liu Z; Tang Y; Zhang Y; Chen X; Wang Y; Tang X Drug Deliv; 2014 Aug; 21(5):351-61. PubMed ID: 24188474 [TBL] [Abstract][Full Text] [Related]
20. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Oktay AN; Karakucuk A; Ilbasmis-Tamer S; Celebi N Eur J Pharm Sci; 2018 Sep; 122():254-263. PubMed ID: 29981401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]