These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25445566)

  • 1. Integration of metabolism and virulence in Clostridium difficile.
    Bouillaut L; Dubois T; Sonenshein AL; Dupuy B
    Res Microbiol; 2015 May; 166(4):375-83. PubMed ID: 25445566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.
    Riedel T; Wetzel D; Hofmann JD; Plorin SPEO; Dannheim H; Berges M; Zimmermann O; Bunk B; Schober I; Spröer C; Liesegang H; Jahn D; Overmann J; Groß U; Neumann-Schaal M
    Int J Med Microbiol; 2017 Sep; 307(6):311-320. PubMed ID: 28619474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism.
    Karlsson S; Burman LG; Åkerlund T
    Microbiology (Reading); 2008 Nov; 154(Pt 11):3430-3436. PubMed ID: 18957596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of Clostridium difficile toxin gene expression by CodY.
    Dineen SS; Villapakkam AC; Nordman JT; Sonenshein AL
    Mol Microbiol; 2007 Oct; 66(1):206-19. PubMed ID: 17725558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors.
    Dupuy B; Matamouros S
    Res Microbiol; 2006 Apr; 157(3):201-5. PubMed ID: 16439101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A; Martin-Verstraete I; Dupuy B
    Mol Microbiol; 2011 Feb; 79(4):882-99. PubMed ID: 21299645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor.
    Mani N; Dupuy B
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5844-9. PubMed ID: 11320220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.
    Antunes A; Dupuy B
    Methods Mol Biol; 2010; 646():93-115. PubMed ID: 20597005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation.
    Neumann-Schaal M; Hofmann JD; Will SE; Schomburg D
    BMC Microbiol; 2015 Dec; 15():281. PubMed ID: 26680234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine.
    Gu H; Shi K; Liao Z; Qi H; Chen S; Wang H; Li S; Ma Y; Wang J
    Microbiol Res; 2018 Oct; 215():114-125. PubMed ID: 30172297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the global regulator Rex in control of NAD
    Bouillaut L; Dubois T; Francis MB; Daou N; Monot M; Sorg JA; Sonenshein AL; Dupuy B
    Mol Microbiol; 2019 Jun; 111(6):1671-1688. PubMed ID: 30882947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.
    Dubois T; Dancer-Thibonnier M; Monot M; Hamiot A; Bouillaut L; Soutourina O; Martin-Verstraete I; Dupuy B
    Infect Immun; 2016 Aug; 84(8):2389-405. PubMed ID: 27297391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC.
    Matamouros S; England P; Dupuy B
    Mol Microbiol; 2007 Jun; 64(5):1274-88. PubMed ID: 17542920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Cysteine Desulfidase CdsB Involved in Releasing Cysteine Repression of Toxin Synthesis in
    Gu H; Yang Y; Wang M; Chen S; Wang H; Li S; Ma Y; Wang J
    Front Cell Infect Microbiol; 2017; 7():531. PubMed ID: 29376034
    [No Abstract]   [Full Text] [Related]  

  • 15. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids.
    Karlsson S; Burman LG; Åkerlund T
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1683-1693. PubMed ID: 10439407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions.
    Yamakawa K; Karasawa T; Ohta T; Hayashi H; Nakamura S
    J Med Microbiol; 1998 Sep; 47(9):767-71. PubMed ID: 9736158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.
    Edwards AN; Tamayo R; McBride SM
    Mol Microbiol; 2016 Jun; 100(6):954-71. PubMed ID: 26915493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen.
    Awad MM; Johanesen PA; Carter GP; Rose E; Lyras D
    Gut Microbes; 2014; 5(5):579-93. PubMed ID: 25483328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus.
    Monot M; Eckert C; Lemire A; Hamiot A; Dubois T; Tessier C; Dumoulard B; Hamel B; Petit A; Lalande V; Ma L; Bouchier C; Barbut F; Dupuy B
    Sci Rep; 2015 Oct; 5():15023. PubMed ID: 26446480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
    Ransom EM; Kaus GM; Tran PM; Ellermeier CD; Weiss DS
    Mol Microbiol; 2018 Nov; 110(4):533-549. PubMed ID: 30125399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.