These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2544559)

  • 1. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator.
    Kreuzer P; Gärtner D; Allmansberger R; Hillen W
    J Bacteriol; 1989 Jul; 171(7):3840-5. PubMed ID: 2544559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose.
    Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W
    Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization.
    Scheler A; Rygus T; Allmansberger R; Hillen W
    Arch Microbiol; 1991; 155(6):526-34. PubMed ID: 1953294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose.
    Gärtner D; Geissendörfer M; Hillen W
    J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium.
    Kauder C; Allmansberger R; Gärtner D; Schmiedel D; Hillen W
    FEMS Microbiol Lett; 1993 May; 109(1):81-4. PubMed ID: 8319885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization.
    Rygus T; Scheler A; Allmansberger R; Hillen W
    Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference.
    Scheler A; Hillen W
    Mol Microbiol; 1994 Aug; 13(3):505-12. PubMed ID: 7997167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame.
    Jacob S; Allmansberger R; Gärtner D; Hillen W
    Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs.
    Dahl MK; Degenkolb J; Hillen W
    J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of expression of the Lactobacillus pentosus xylAB operon.
    Lokman BC; Heerikhuisen M; Leer RJ; van den Broek A; Borsboom Y; Chaillou S; Postma PW; Pouwels PH
    J Bacteriol; 1997 Sep; 179(17):5391-7. PubMed ID: 9286992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level.
    Sizemore C; Wieland B; Götz F; Hillen W
    J Bacteriol; 1992 May; 174(9):3042-8. PubMed ID: 1569030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements.
    Geissendörfer M; Hillen W
    Appl Microbiol Biotechnol; 1990 Sep; 33(6):657-63. PubMed ID: 1369298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression.
    Kraus A; Hueck C; Gärtner D; Hillen W
    J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins.
    Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG
    J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional control in the EcoRI-F immunity region of Bacillus subtilis phage phi 105. Identification and unusual structure of the operator.
    Van Kaer L; Van Montagu M; Dhaese P
    J Mol Biol; 1987 Sep; 197(1):55-67. PubMed ID: 3119860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA and protein sequence conservation at the replication terminus in Bacillus subtilis 168 and W23.
    Lewis PJ; Wake RG
    J Bacteriol; 1989 Mar; 171(3):1402-8. PubMed ID: 2493444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an operator sequence for the Bacillus subtilis gnt operon.
    Fujita Y; Miwa Y
    J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor.
    Himeno T; Imanaka T; Aiba S
    J Bacteriol; 1986 Dec; 168(3):1128-32. PubMed ID: 3096969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolite repression of the xyl operon in Bacillus megaterium.
    Rygus T; Hillen W
    J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a DeoR-specific operator sequence essential for induction of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Saxild HH
    J Bacteriol; 1999 Mar; 181(6):1719-27. PubMed ID: 10074062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.