BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 25445669)

  • 1. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane interactions of two arginine-rich peptides with different cell internalization capacities.
    Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID
    Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis.
    Bechara C; Pallerla M; Zaltsman Y; Burlina F; Alves ID; Lequin O; Sagan S
    FASEB J; 2013 Feb; 27(2):738-49. PubMed ID: 23070606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides.
    Walrant A; Bauzá A; Girardet C; Alves ID; Lecomte S; Illien F; Cardon S; Chaianantakul N; Pallerla M; Burlina F; Frontera A; Sagan S
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183098. PubMed ID: 31676372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides.
    Rydberg HA; Matson M; Amand HL; Esbjörner EK; Nordén B
    Biochemistry; 2012 Jul; 51(27):5531-9. PubMed ID: 22712882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models.
    Lozada C; Gonzalez S; Agniel R; Hindie M; Manciocchi L; Mazzanti L; Ha-Duong T; Santoro F; Carotenuto A; Ballet S; Lubin-Germain N
    Bioorg Chem; 2023 Oct; 139():106731. PubMed ID: 37480815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides.
    Seisel Q; Pelletier F; Deshayes S; Boisguerin P
    Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1533-1545. PubMed ID: 31283917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides.
    Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID
    Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Putative Helix-Breaking Amino Acids in the Design of Novel Stapled Peptides: Exploring Biophysical and Cellular Permeability Properties.
    Partridge AW; Kaan HYK; Juang YC; Sadruddin A; Lim S; Brown CJ; Ng S; Thean D; Ferrer F; Johannes C; Yuen TY; Kannan S; Aronica P; Tan YS; Pradhan MR; Verma CS; Hochman J; Chen S; Wan H; Ha S; Sherborne B; Lane DP; Sawyer TK
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31226791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides.
    Lécorché P; Walrant A; Burlina F; Dutot L; Sagan S; Mallet JM; Desbat B; Chassaing G; Alves ID; Lavielle S
    Biochim Biophys Acta; 2012 Mar; 1818(3):448-57. PubMed ID: 22182801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane binding and translocation of cell-penetrating peptides.
    Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B
    Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane interaction and cellular internalization of penetratin peptides.
    Christiaens B; Grooten J; Reusens M; Joliot A; Goethals M; Vandekerckhove J; Prochiantz A; Rosseneu M
    Eur J Biochem; 2004 Mar; 271(6):1187-97. PubMed ID: 15009197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP.
    Tchoumi Neree A; Nguyen PT; Chatenet D; Fournier A; Bourgault S
    FEBS Lett; 2014 Dec; 588(24):4590-6. PubMed ID: 25447531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential.
    Henriques ST; Costa J; Castanho MA
    Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.
    Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.