These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 25445672)

  • 21. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities.
    Perrone B; Miles AJ; Salnikov ES; Wallace BA; Bechinger B
    Eur Biophys J; 2014 Nov; 43(10-11):499-507. PubMed ID: 25182242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation.
    Khandelia H; Kaznessis YN
    Biochim Biophys Acta; 2007 Mar; 1768(3):509-20. PubMed ID: 17254546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane.
    Vivcharuk V; Tomberli B; Tolokh IS; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031913. PubMed ID: 18517428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the Effects of the POPC-POPG Lipid Bilayer Composition on PAP248-286 Binding Using CG Molecular Dynamics Simulations.
    Agrawal N; Parisini E
    J Phys Chem B; 2023 Oct; 127(42):9095-9101. PubMed ID: 37843472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer.
    Mustafa G; Nandekar PP; Yu X; Wade RC
    J Chem Phys; 2015 Dec; 143(24):243139. PubMed ID: 26723624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol.
    Gallucci E; Meleleo D; Micelli S; Picciarelli V
    Eur Biophys J; 2003 Mar; 32(1):22-32. PubMed ID: 12632203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study.
    Orioni B; Bocchinfuso G; Kim JY; Palleschi A; Grande G; Bobone S; Park Y; Kim JI; Hahm KS; Stella L
    Biochim Biophys Acta; 2009 Jul; 1788(7):1523-33. PubMed ID: 19397893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The membrane activity of the antimicrobial peptide caerin 1.1 is pH dependent.
    Sani MA; Le Brun AP; Rajput S; Attard T; Separovic F
    Biophys J; 2023 Mar; 122(6):1058-1067. PubMed ID: 36680343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of Reversible Peptide-Bilayer Attachment: Combined Simulation and Experimental Single-Molecule Study.
    Schwierz N; Krysiak S; Hugel T; Zacharias M
    Langmuir; 2016 Jan; 32(3):810-21. PubMed ID: 26717083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1.
    Bond PJ; Parton DL; Clark JF; Sansom MS
    Biophys J; 2008 Oct; 95(8):3802-15. PubMed ID: 18641064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local pressure changes in lipid bilayers due to adsorption of melittin and magainin-h2 antimicrobial peptides: results from computer simulations.
    Goliaei A; Santo KP; Berkowitz ML
    J Phys Chem B; 2014 Nov; 118(44):12673-9. PubMed ID: 25299589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding and insertion thermodynamics of the transmembrane WALP peptide.
    Bereau T; Bennett WF; Pfaendtner J; Deserno M; Karttunen M
    J Chem Phys; 2015 Dec; 143(24):243127. PubMed ID: 26723612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer.
    Mukherjee S; Kar RK; Nanga RPR; Mroue KH; Ramamoorthy A; Bhunia A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19289-19299. PubMed ID: 28702543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization.
    Mihailescu M; Sorci M; Seckute J; Silin VI; Hammer J; Perrin BS; Hernandez JI; Smajic N; Shrestha A; Bogardus KA; Greenwood AI; Fu R; Blazyk J; Pastor RW; Nicholson LK; Belfort G; Cotten ML
    J Am Chem Soc; 2019 Jun; 141(25):9837-9853. PubMed ID: 31144503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial peptide dendrimer interacts with phosphocholine membranes in a fluidity dependent manner: A neutron reflection study combined with molecular dynamics simulations.
    Lind TK; Darré L; Domene C; Urbanczyk-Lipkowska Z; Cárdenas M; Wacklin HP
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2075-84. PubMed ID: 26025586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers.
    Hu Y; Patel S
    J Membr Biol; 2015 Jun; 248(3):505-15. PubMed ID: 25008278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.