These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 25445677)
1. Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Ahmad A; Ranjan S; Zhang W; Zou J; Pyykkö I; Kinnunen PK Biochim Biophys Acta; 2015 Feb; 1848(2):544-53. PubMed ID: 25445677 [TBL] [Abstract][Full Text] [Related]
2. Design of pH-sensitive peptides from natural antimicrobial peptides for enhancing polyethylenimine-mediated gene transfection. Zhang SK; Song JW; Li SB; Gao HW; Chang HY; Jia LL; Gong F; Tan YX; Ji SP J Gene Med; 2017 May; 19(5):. PubMed ID: 28370835 [TBL] [Abstract][Full Text] [Related]
3. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Duguid JG; Li C; Shi M; Logan MJ; Alila H; Rolland A; Tomlinson E; Sparrow JT; Smith LC Biophys J; 1998 Jun; 74(6):2802-14. PubMed ID: 9635734 [TBL] [Abstract][Full Text] [Related]
4. Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection. Tan YX; Chen C; Wang YL; Lin S; Wang Y; Li SB; Jin XP; Gao HW; Du FS; Gong F; Ji SP J Gene Med; 2012 Apr; 14(4):241-50. PubMed ID: 22328546 [TBL] [Abstract][Full Text] [Related]
5. A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. Meyer M; Zintchenko A; Ogris M; Wagner E J Gene Med; 2007 Sep; 9(9):797-805. PubMed ID: 17628028 [TBL] [Abstract][Full Text] [Related]
6. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. Weng A; Manunta MD; Thakur M; Gilabert-Oriol R; Tagalakis AD; Eddaoudi A; Munye MM; Vink CA; Wiesner B; Eichhorst J; Melzig MF; Hart SL J Control Release; 2015 May; 206():75-90. PubMed ID: 25758332 [TBL] [Abstract][Full Text] [Related]
7. Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery. He SN; Li YL; Yan JJ; Zhang W; Du YZ; Yu HY; Hu FQ; Yuan H Int J Nanomedicine; 2013; 8():2859-69. PubMed ID: 23990715 [TBL] [Abstract][Full Text] [Related]
8. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Ahmad A; Khan JM; Haque S Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879 [TBL] [Abstract][Full Text] [Related]
9. Enhanced gene expression by a novel designed leucine zipper endosomolytic peptide. Ahmad A; Rilla K; Zou J; Zhang W; Pyykkö I; Kinnunen P; Ranjan S Int J Pharm; 2021 May; 601():120556. PubMed ID: 33798688 [TBL] [Abstract][Full Text] [Related]
10. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. El-Sayed A; Khalil IA; Kogure K; Futaki S; Harashima H J Biol Chem; 2008 Aug; 283(34):23450-61. PubMed ID: 18550548 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. Hou KK; Pan H; Ratner L; Schlesinger PH; Wickline SA ACS Nano; 2013 Oct; 7(10):8605-15. PubMed ID: 24053333 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. Majzoub RN; Chan CL; Ewert KK; Silva BF; Liang KS; Safinya CR Biochim Biophys Acta; 2015 Jun; 1848(6):1308-18. PubMed ID: 25753113 [TBL] [Abstract][Full Text] [Related]
13. Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. Asthana N; Yadav SP; Ghosh JK J Biol Chem; 2004 Dec; 279(53):55042-50. PubMed ID: 15475354 [TBL] [Abstract][Full Text] [Related]
14. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. Boeckle S; Fahrmeir J; Roedl W; Ogris M; Wagner E J Control Release; 2006 May; 112(2):240-8. PubMed ID: 16545884 [TBL] [Abstract][Full Text] [Related]
15. High efficiency intracellular transport of cationic peptide stearate for gene delivery in tumor cells and multipotent stem cells. Shan CL; Huang B; You J; Yuan H; Gao JQ; Hu FQ; Du YZ J Biomed Nanotechnol; 2014 Nov; 10(11):3231-43. PubMed ID: 26000383 [TBL] [Abstract][Full Text] [Related]
16. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger. Oude Blenke E; Sleszynska M; Evers MJ; Storm G; Martin NI; Mastrobattista E Bioconjug Chem; 2017 Feb; 28(2):574-582. PubMed ID: 28004569 [TBL] [Abstract][Full Text] [Related]
17. Development of a novel endosomolytic diblock copolymer for siRNA delivery. Convertine AJ; Benoit DS; Duvall CL; Hoffman AS; Stayton PS J Control Release; 2009 Feb; 133(3):221-9. PubMed ID: 18973780 [TBL] [Abstract][Full Text] [Related]
18. Stearylated antimicrobial peptide melittin and its retro isomer for efficient gene transfection. Zhang W; Song J; Liang R; Zheng X; Chen J; Li G; Zhang B; Yan X; Wang R Bioconjug Chem; 2013 Nov; 24(11):1805-12. PubMed ID: 24107137 [TBL] [Abstract][Full Text] [Related]
19. Efficient intracellular gene delivery using the formulation composed of poly (L-glutamic acid) grafted polyethylenimine and histone. Deng J; Wen Y; Wang C; Pan S; Gu H; Zeng X; Han L; Zhao Y; Feng M; Wu C Pharm Res; 2011 Apr; 28(4):812-26. PubMed ID: 21161337 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial peptide AR-23 derivatives with high endosomal disrupting ability enhance poly(l-lysine)-mediated gene transfer. Zhang SK; Gong L; Zhang X; Yun ZM; Li SB; Gao HW; Dai CJ; Yuan JJ; Chen JM; Gong F; Tan YX; Ji SP J Gene Med; 2020 Nov; 22(11):e3259. PubMed ID: 32776410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]