These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 25445910)
1. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium. de Oliveira S; Lopez-Muñoz A; Martínez-Navarro FJ; Galindo-Villegas J; Mulero V; Calado  Dev Comp Immunol; 2015 Mar; 49(1):44-8. PubMed ID: 25445910 [TBL] [Abstract][Full Text] [Related]
2. T lymphocyte-dependent and -independent regulation of Cxcl8 expression in zebrafish intestines. Brugman S; Witte M; Scholman RC; Klein MR; Boes M; Nieuwenhuis EE J Immunol; 2014 Jan; 192(1):484-91. PubMed ID: 24277695 [TBL] [Abstract][Full Text] [Related]
3. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Oehlers SH; Flores MV; Hall CJ; O'Toole R; Swift S; Crosier KE; Crosier PS Dev Comp Immunol; 2010 Mar; 34(3):352-9. PubMed ID: 19941893 [TBL] [Abstract][Full Text] [Related]
4. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Masud S; Prajsnar TK; Torraca V; Lamers GEM; Benning M; Van Der Vaart M; Meijer AH Autophagy; 2019 May; 15(5):796-812. PubMed ID: 30676840 [TBL] [Abstract][Full Text] [Related]
5. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. Hu W; Yang S; Shimada Y; Münch M; Marín-Juez R; Meijer AH; Spaink HP BMC Genomics; 2019 Nov; 20(1):878. PubMed ID: 31747871 [TBL] [Abstract][Full Text] [Related]
6. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. de Oliveira S; Reyes-Aldasoro CC; Candel S; Renshaw SA; Mulero V; Calado A J Immunol; 2013 Apr; 190(8):4349-59. PubMed ID: 23509368 [TBL] [Abstract][Full Text] [Related]
7. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods. Varas M; Fariña A; Díaz-Pascual F; Ortíz-Severín J; Marcoleta AE; Allende ML; Santiviago CA; Chávez FP J Microbiol Methods; 2017 Apr; 135():20-25. PubMed ID: 28161588 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. Ordas A; Kanwal Z; Lindenberg V; Rougeot J; Mink M; Spaink HP; Meijer AH BMC Genomics; 2013 Oct; 14():696. PubMed ID: 24112639 [TBL] [Abstract][Full Text] [Related]
9. Rubicon-Dependent Lc3 Recruitment to Masud S; van der Burg L; Storm L; Prajsnar TK; Meijer AH Front Cell Infect Microbiol; 2019; 9():279. PubMed ID: 31428591 [TBL] [Abstract][Full Text] [Related]
11. MyD88 innate immune function in a zebrafish embryo infection model. van der Sar AM; Stockhammer OW; van der Laan C; Spaink HP; Bitter W; Meijer AH Infect Immun; 2006 Apr; 74(4):2436-41. PubMed ID: 16552074 [TBL] [Abstract][Full Text] [Related]
12. Tissue Damage Signaling Is a Prerequisite for Protective Neutrophil Recruitment to Microbial Infection in Zebrafish. Huang C; Niethammer P Immunity; 2018 May; 48(5):1006-1013.e6. PubMed ID: 29768163 [TBL] [Abstract][Full Text] [Related]
13. Establishment of multi-site infection model in zebrafish larvae for studying Staphylococcus aureus infectious disease. Li YJ; Hu B J Genet Genomics; 2012 Sep; 39(9):521-34. PubMed ID: 23021551 [TBL] [Abstract][Full Text] [Related]
14. IL-1β and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model. Yan B; Han P; Pan L; Lu W; Xiong J; Zhang M; Zhang W; Li L; Wen Z J Immunol; 2014 Jun; 192(12):5998-6008. PubMed ID: 24835391 [TBL] [Abstract][Full Text] [Related]
15. Zebrafish as a model organism to study host-pathogen interactions. Medina C; Royo JL Methods; 2013 Aug; 62(3):241-5. PubMed ID: 23619567 [TBL] [Abstract][Full Text] [Related]
16. CXCL8 chemokines in teleost fish: two lineages with distinct expression profiles during early phases of inflammation. van der Aa LM; Chadzinska M; Tijhaar E; Boudinot P; Verburg-van Kemenade BM PLoS One; 2010 Aug; 5(8):e12384. PubMed ID: 20865040 [TBL] [Abstract][Full Text] [Related]
17. New Insights into IgZ as a Maternal Transfer Ig Contributing to the Early Defense of Fish against Pathogen Infection. Ji JF; Hu CB; Zhang N; Huang X; Shao T; Fan DD; Lin AF; Xiang LX; Shao JZ J Immunol; 2021 May; 206(9):2001-2014. PubMed ID: 33858963 [TBL] [Abstract][Full Text] [Related]
18. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Ordas A; Hegedus Z; Henkel CV; Stockhammer OW; Butler D; Jansen HJ; Racz P; Mink M; Spaink HP; Meijer AH Fish Shellfish Immunol; 2011 Nov; 31(5):716-24. PubMed ID: 20816807 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. Stockhammer OW; Zakrzewska A; Hegedûs Z; Spaink HP; Meijer AH J Immunol; 2009 May; 182(9):5641-53. PubMed ID: 19380811 [TBL] [Abstract][Full Text] [Related]
20. The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish. Walton EM; Cronan MR; Beerman RW; Tobin DM PLoS One; 2015; 10(10):e0138949. PubMed ID: 26445458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]