BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25445920)

  • 1. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Feb; 53():128-35. PubMed ID: 25445920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Jun; 55():64-72. PubMed ID: 25817969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing a knowledge-driven approach to a supervised machine learning approach in large-scale extraction of drug-side effect relationships from free-text biomedical literature.
    Xu R; Wang Q
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S6. PubMed ID: 25860223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward creation of a cancer drug toxicity knowledge base: automatically extracting cancer drug-side effect relationships from the literature.
    Xu R; Wang Q
    J Am Med Inform Assoc; 2014; 21(1):90-6. PubMed ID: 23686935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic construction of a large-scale and accurate drug-side-effect association knowledge base from biomedical literature.
    Xu R; Wang Q
    J Biomed Inform; 2014 Oct; 51():191-9. PubMed ID: 24928448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic signal extraction, prioritizing and filtering approaches in detecting post-marketing cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS).
    Xu R; Wang Q
    J Biomed Inform; 2014 Feb; 47():171-7. PubMed ID: 24177320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tcTKB: an integrated cardiovascular toxicity knowledge base for targeted cancer drugs.
    Xu R; Wang Q
    AMIA Annu Symp Proc; 2015; 2015():1342-51. PubMed ID: 26958275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing.
    Xu R; Wang Q
    BMC Bioinformatics; 2013 Jun; 14():181. PubMed ID: 23742147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection.
    Xu R; Wang Q
    BMC Bioinformatics; 2014 Jan; 15():17. PubMed ID: 24428898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating drug repositioning opportunities in FDA drug labels through topic modeling.
    Bisgin H; Liu Z; Kelly R; Fang H; Xu X; Tong W
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S6. PubMed ID: 23046522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PISTON: Predicting drug indications and side effects using topic modeling and natural language processing.
    Jang G; Lee T; Hwang S; Park C; Ahn J; Seo S; Hwang Y; Yoon Y
    J Biomed Inform; 2018 Nov; 87():96-107. PubMed ID: 30268842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
    Xu R; Wang Q
    J Biomed Inform; 2012 Oct; 45(5):827-34. PubMed ID: 22561026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards building a disease-phenotype knowledge base: extracting disease-manifestation relationship from literature.
    Xu R; Li L; Wang Q
    Bioinformatics; 2013 Sep; 29(17):2186-94. PubMed ID: 23828786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of drug indications from FDA drug labels.
    Khare R; Wei CH; Lu Z
    AMIA Annu Symp Proc; 2014; 2014():787-94. PubMed ID: 25954385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug Repositioning by Mining Adverse Event Data in ClinicalTrials.gov.
    Su EW
    Methods Mol Biol; 2019; 1903():61-72. PubMed ID: 30547436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.
    Gurulingappa H; Toldo L; Rajput AM; Kors JA; Taweel A; Tayrouz Y
    Pharmacoepidemiol Drug Saf; 2013 Nov; 22(11):1189-94. PubMed ID: 23935003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Classification of Structured Product Labels for Pregnancy Risk Drug Categories, a Machine Learning Approach.
    Rodriguez LM; Fushman DD
    AMIA Annu Symp Proc; 2015; 2015():1093-102. PubMed ID: 26958248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining FDA drug labels using an unsupervised learning technique--topic modeling.
    Bisgin H; Liu Z; Fang H; Xu X; Tong W
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S11. PubMed ID: 22166012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER) system.
    Pandey A; Kreimeyer K; Foster M; Dang O; Ly T; Wang W; Forshee R; Botsis T
    Health Informatics J; 2019 Dec; 25(4):1232-1243. PubMed ID: 29359620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text.
    Xu R; Li L; Wang Q
    BMC Bioinformatics; 2014 Apr; 15():105. PubMed ID: 24725842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.