BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25445971)

  • 1. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.
    Yadav D; Kumar N
    Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization.
    Chow SF; Wan KY; Cheng KK; Wong KW; Sun CC; Baum L; Chow AH
    Eur J Pharm Biopharm; 2015 Aug; 94():436-49. PubMed ID: 26143368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.
    Zu Y; Sun W; Zhao X; Wang W; Li Y; Ge Y; Liu Y; Wang K
    Eur J Pharm Sci; 2014 Mar; 53():109-17. PubMed ID: 24345795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.
    Nguyen MH; Yu H; Kiew TY; Hadinoto K
    Eur J Pharm Biopharm; 2015 Oct; 96():1-10. PubMed ID: 26170159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.
    Zhao X; Wang W; Zu Y; Zhang Y; Li Y; Sun W; Shan C; Ge Y
    Drug Deliv; 2014 Sep; 21(6):467-79. PubMed ID: 24479653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.
    Anwar M; Ahmad I; Warsi MH; Mohapatra S; Ahmad N; Akhter S; Ali A; Ahmad FJ
    Eur J Pharm Biopharm; 2015 Oct; 96():162-72. PubMed ID: 26241925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micronization of atorvastatin calcium by antisolvent precipitation process.
    Zhang HX; Wang JX; Zhang ZB; Le Y; Shen ZG; Chen JF
    Int J Pharm; 2009 Jun; 374(1-2):106-13. PubMed ID: 19446766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of azithromycin nanosuspensions by reactive precipitation method.
    Hou CD; Wang JX; Le Y; Zou HK; Zhao H
    Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP.
    Homayouni A; Sohrabi M; Amini M; Varshosaz J; Nokhodchi A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():185-196. PubMed ID: 30813018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.
    Aditya NP; Yang H; Kim S; Ko S
    Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the apparent solubility and bioavailability of Tadalafil nanoparticles via antisolvent precipitation.
    Rao Q; Qiu Z; Huang D; Lu T; Zhang ZJ; Luo D; Pan P; Zhang L; Liu Y; Guan S; Li Q
    Eur J Pharm Sci; 2019 Feb; 128():222-231. PubMed ID: 30553058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and characterization of curcumin loaded gelatin microspheres for lung targeting].
    Cao FL; Xi YW; Tang L; Yu AH; Zhai GX
    Zhong Yao Cai; 2009 Mar; 32(3):423-6. PubMed ID: 19565724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of micronized ellagic acid using antisolvent precipitation for oral delivery.
    Li Y; Zhao X; Zu Y; Zhang Y; Ge Y; Zhong C; Wu W
    Int J Pharm; 2015; 486(1-2):207-16. PubMed ID: 25841566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.
    Freag MS; Elnaggar YS; Abdallah OY
    Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization.
    Homayouni A; Amini M; Sohrabi M; Varshosaz J; Nokhodchi A
    Int J Pharm; 2019 May; 562():124-134. PubMed ID: 30898640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.