These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25446009)

  • 41. Simple spectrophotocolorimetric method for quantitative determination of gold in nanoparticles.
    Tournebize J; Sapin-Minet A; Schneider R; Boudier A; Maincent P; Leroy P
    Talanta; 2011 Feb; 83(5):1780-3. PubMed ID: 21238784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells.
    Liu Y; Rogel N; Harada K; Jarett L; Maiorana CH; German GK; Mahler GJ; Doiron AL
    Nanotoxicology; 2017 Sep; 11(7):846-856. PubMed ID: 28885066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An easy-to-handle microfluidic device suitable for immunohistochemical procedures in mammalian cells grown under flow conditions.
    Fede C; Fortunati I; Petrelli L; Guidolin D; De Caro R; Ferrante C; Albertin G
    Eur J Histochem; 2014 May; 58(2):2360. PubMed ID: 24998924
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flow Rate Affects Nanoparticle Uptake into Endothelial Cells.
    Chen YY; Syed AM; MacMillan P; Rocheleau JV; Chan WCW
    Adv Mater; 2020 Jun; 32(24):e1906274. PubMed ID: 32383233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ecotoxicity and uptake of polymer coated gold nanoparticles.
    Van Hoecke K; De Schamphelaere KA; Ali Z; Zhang F; Elsaesser A; Rivera-Gil P; Parak WJ; Smagghe G; Howard CV; Janssen CR
    Nanotoxicology; 2013 Feb; 7(1):37-47. PubMed ID: 22023156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.
    Sahu SC; Zheng J; Graham L; Chen L; Ihrie J; Yourick JJ; Sprando RL
    J Appl Toxicol; 2014 Nov; 34(11):1155-66. PubMed ID: 24522958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures.
    Yeon JH; Na D; Choi K; Ryu SW; Choi C; Park JK
    Biomed Microdevices; 2012 Dec; 14(6):1141-8. PubMed ID: 22821236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria.
    Wang S; Lawson R; Ray PC; Yu H
    Toxicol Ind Health; 2011 Jul; 27(6):547-54. PubMed ID: 21415096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2010 Sep; 10(18):2374-9. PubMed ID: 20563348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa.
    Husseiny MI; El-Aziz MA; Badr Y; Mahmoud MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1003-6. PubMed ID: 17084659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system.
    Uchiyama MK; Deda DK; Rodrigues SF; Drewes CC; Bolonheis SM; Kiyohara PK; Toledo SP; Colli W; Araki K; Farsky SH
    Toxicol Sci; 2014 Dec; 142(2):497-507. PubMed ID: 25260831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrasensitive non-mediator electrochemical immunosensors using Au/Ag/Au core/double shell nanoparticles as enzyme-mimetic labels.
    Wang Y; Zhang Y; Su Y; Li F; Ma H; Li H; Du B; Wei Q
    Talanta; 2014 Jun; 124():60-6. PubMed ID: 24767446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake.
    Li G; Li D; Zhang L; Zhai J; Wang E
    Chemistry; 2009 Sep; 15(38):9868-73. PubMed ID: 19697373
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts.
    Song Y; Feng D; Shi W; Li X; Ma H
    Talanta; 2013 Nov; 116():237-44. PubMed ID: 24148399
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation.
    Chen R; Huo L; Shi X; Bai R; Zhang Z; Zhao Y; Chang Y; Chen C
    ACS Nano; 2014 Mar; 8(3):2562-74. PubMed ID: 24490819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.
    Zheng C; Zhang X; Li C; Pang Y; Huang Y
    Anal Chem; 2017 Mar; 89(6):3710-3715. PubMed ID: 28225604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.