BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25446126)

  • 1. Characterization of the minimal length of functional SecA in Escherichia coli.
    Na B; You Z; Yang H; Tai PC
    Biochem Biophys Res Commun; 2015 Jan; 456(1):213-8. PubMed ID: 25446126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dispensability and requirement of SecA N-terminal aminoacyl residues for complementation, membrane binding, lipid-specific domains and channel activities.
    Floyd JH; You Z; Hsieh YH; Ma Y; Yang H; Tai PC
    Biochem Biophys Res Commun; 2014 Oct; 453(1):138-42. PubMed ID: 25264203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli SecA truncated at its termini is functional and dimeric.
    Karamanou S; Sianidis G; Gouridis G; Pozidis C; Papanikolau Y; Papanikou E; Economou A
    FEBS Lett; 2005 Feb; 579(5):1267-71. PubMed ID: 15710424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A truncated Bacillus subtilis SecA protein consisting of the N-terminal 234 amino acid residues forms a complex with Escherichia coli SecA51(ts) protein and complements the protein translocation defect of the secA51 mutant.
    Takamatsu H; Nakane A; Oguro A; Sadaie Y; Nakamura K; Yamane K
    J Biochem; 1994 Dec; 116(6):1287-94. PubMed ID: 7706219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli.
    Wang H; Na B; Yang H; Tai PC
    J Bacteriol; 2008 Feb; 190(4):1413-8. PubMed ID: 18065528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational state of the SecYEG-bound SecA probed by single tryptophan fluorescence spectroscopy.
    Natale P; den Blaauwen T; van der Does C; Driessen AJ
    Biochemistry; 2005 May; 44(17):6424-32. PubMed ID: 15850376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reexamination of the role of the amino terminus of SecA in promoting its dimerization and functional state.
    Das S; Stivison E; Folta-Stogniew E; Oliver D
    J Bacteriol; 2008 Nov; 190(21):7302-7. PubMed ID: 18723626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane.
    Or E; Navon A; Rapoport T
    EMBO J; 2002 Sep; 21(17):4470-9. PubMed ID: 12198149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo.
    Klose M; Schimz KL; van der Wolk J; Driessen AJ; Freudl R
    J Biol Chem; 1993 Feb; 268(6):4504-10. PubMed ID: 8440733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric binding between SecA and SecB two symmetric proteins: implications for function in export.
    Randall LL; Crane JM; Lilly AA; Liu G; Mao C; Patel CN; Hardy SJ
    J Mol Biol; 2005 Apr; 348(2):479-89. PubMed ID: 15811382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimeric SecA is essential for protein translocation.
    Jilaveanu LB; Zito CR; Oliver D
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7511-6. PubMed ID: 15897468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands.
    Scheuring J; Braun N; Nothdurft L; Stumpf M; Veenendaal AK; Kol S; van der Does C; Driessen AJ; Weinkauf S
    J Mol Biol; 2005 Nov; 354(2):258-71. PubMed ID: 16242710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxy-terminal region of Escherichia coli SecA ATPase is important to promote its protein translocation activity in vivo.
    Rajapandi T; Oliver D
    Biochem Biophys Res Commun; 1994 May; 200(3):1477-83. PubMed ID: 8185602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the Escherichia coli SecA dimer interface residues through in vivo site-specific photo-cross-linking.
    Yu D; Wowor AJ; Cole JL; Kendall DA
    J Bacteriol; 2013 Jun; 195(12):2817-25. PubMed ID: 23585536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase.
    Duong F
    EMBO J; 2003 Sep; 22(17):4375-84. PubMed ID: 12941690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and analysis of dominant secA mutations in Escherichia coli.
    Jarosik GP; Oliver DB
    J Bacteriol; 1991 Jan; 173(2):860-8. PubMed ID: 1824769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of secA homologues from rickettsiae.
    Rahman MS; Simser JA; Macaluso KR; Azad AF
    Microbiology (Reading); 2005 Feb; 151(Pt 2):589-596. PubMed ID: 15699207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct identification of the site of binding on the chaperone SecB for the amino terminus of the translocon motor SecA.
    Randall LL; Henzl MT
    Protein Sci; 2010 Jun; 19(6):1173-9. PubMed ID: 20512970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase.
    Ding H; Mukerji I; Oliver D
    Biochemistry; 2003 Nov; 42(46):13468-75. PubMed ID: 14621992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of the secA gene of a marine bacterium, Vibrio alginolyticus, and analysis of its function in Escherichia coli.
    Kunioka E; Matsuyama S; Tokuda H
    Gene; 1998 Aug; 216(2):303-9. PubMed ID: 9729436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.