These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25446233)

  • 41. Microtubules, signalling and abiotic stress.
    Nick P
    Plant J; 2013 Jul; 75(2):309-23. PubMed ID: 23311499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes.
    Rodríguez-Peña JM; García R; Nombela C; Arroyo J
    Yeast; 2010 Aug; 27(8):495-502. PubMed ID: 20641030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae.
    Tun NM; O'Doherty PJ; Perrone GG; Bailey TD; Kersaitis C; Wu MJ
    Metallomics; 2013 Aug; 5(8):1068-75. PubMed ID: 23832094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microcompartments within the yeast plasma membrane.
    Merzendorfer H; Heinisch JJ
    Biol Chem; 2013 Feb; 394(2):189-202. PubMed ID: 23096568
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The plant secretory pathway: an essential factory for building the plant cell wall.
    Kim SJ; Brandizzi F
    Plant Cell Physiol; 2014 Apr; 55(4):687-93. PubMed ID: 24401957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae.
    Azad GK; Singh V; Baranwal S; Thakare MJ; Tomar RS
    FEBS Lett; 2015 Jan; 589(1):59-67. PubMed ID: 25481258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p.
    Hutzler F; Gerstl R; Lommel M; Strahl S
    Mol Microbiol; 2008 Jun; 68(6):1438-49. PubMed ID: 18410496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of GPI14/YJR013w mutation that induces the cell wall integrity signalling pathway and results in increased protein production in Saccharomyces cerevisiae.
    Davydenko SG; Feng D; Jäntti J; Keränen S
    Yeast; 2005 Sep; 22(12):993-1009. PubMed ID: 16134120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Saccharomyces cerevisiae YCRO17c/CWH43 encodes a putative sensor/transporter protein upstream of the BCK2 branch of the PKC1-dependent cell wall integrity pathway.
    Martin-Yken H; Dagkessamanskaia A; De Groot P; Ram A; Klis F; François J
    Yeast; 2001 Jun; 18(9):827-40. PubMed ID: 11427965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomics in the detection of damage in microbial systems: cell wall stress in yeast.
    Arroyo J; Bermejo C; García R; Rodríguez-Peña JM
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():44-6. PubMed ID: 19220354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals.
    Boisson-Dernier A; Kessler SA; Grossniklaus U
    J Exp Bot; 2011 Mar; 62(5):1581-91. PubMed ID: 21252257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trans-Golgi network: an intersection of trafficking cell wall components.
    Worden N; Park E; Drakakaki G
    J Integr Plant Biol; 2012 Nov; 54(11):875-86. PubMed ID: 23088668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytoskeletal regulation of primary plant cell wall assembly.
    Chebli Y; Bidhendi AJ; Kapoor K; Geitmann A
    Curr Biol; 2021 May; 31(10):R681-R695. PubMed ID: 34033798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant Cell Wall Proteins and Development.
    Jamet E; Dunand C
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.
    Houston K; Tucker MR; Chowdhury J; Shirley N; Little A
    Front Plant Sci; 2016; 7():984. PubMed ID: 27559336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Across the great divide: the plant cell surface continuum.
    McKenna JF; Tolmie AF; Runions J
    Curr Opin Plant Biol; 2014 Dec; 22():132-140. PubMed ID: 25460078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls.
    Anderson CT; Kieber JJ
    Annu Rev Plant Biol; 2020 Apr; 71():39-69. PubMed ID: 32084323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The molecular mechanism of cytokinesis in plant cells].
    Sasabe M; Machida Y
    Seikagaku; 2016 Aug; 88(4):465-75. PubMed ID: 29620310
    [No Abstract]   [Full Text] [Related]  

  • 59. Experimental approaches to study plant cell walls during plant-microbe interactions.
    Xia Y; Petti C; Williams MA; DeBolt S
    Front Plant Sci; 2014; 5():540. PubMed ID: 25352855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant Cell Wall Integrity Perturbations and Priming for Defense.
    Swaminathan S; Lionetti V; Zabotina OA
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.