BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 25446268)

  • 1. A resistance band increased internal hip abduction moments and gluteus medius activation during pre-landing and early-landing.
    Dai B; Heinbaugh EM; Ning X; Zhu Q
    J Biomech; 2014 Nov; 47(15):3674-80. PubMed ID: 25446268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury.
    Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE
    Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip-abductor fatigue and single-leg landing mechanics in women athletes.
    Patrek MF; Kernozek TW; Willson JD; Wright GA; Doberstein ST
    J Athl Train; 2011; 46(1):31-42. PubMed ID: 21214348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    Scand J Med Sci Sports; 2019 Aug; 29(8):1130-1140. PubMed ID: 31050053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing non-contact ACL injuries in female athletes: What can we learn from dancers?
    Turner C; Crow S; Crowther T; Keating B; Saupan T; Pyfer J; Vialpando K; Lee SP
    Phys Ther Sport; 2018 May; 31():1-8. PubMed ID: 29447910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip abductor function and lower extremity landing kinematics: sex differences.
    Jacobs CA; Uhl TL; Mattacola CG; Shapiro R; Rayens WS
    J Athl Train; 2007; 42(1):76-83. PubMed ID: 17597947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee abduction moment is predicted by lower gluteus medius force and larger vertical and lateral ground reaction forces during drop vertical jump in female athletes.
    Ueno R; Navacchia A; DiCesare CA; Ford KR; Myer GD; Ishida T; Tohyama H; Hewett TE
    J Biomech; 2020 Apr; 103():109669. PubMed ID: 32019678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task.
    Stearns KM; Powers CM
    Am J Sports Med; 2014 Mar; 42(3):602-9. PubMed ID: 24464929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.
    Bates NA; Ford KR; Myer GD; Hewett TE
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):459-66. PubMed ID: 23562293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-flight trunk flexion and extension altered segment and lower extremity joint movements and subsequent landing mechanics.
    Davis DJ; Hinshaw TJ; Critchley ML; Dai B
    J Sci Med Sport; 2019 Aug; 22(8):955-961. PubMed ID: 30902539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity fatigue, sex, and landing performance in a population with recurrent low back pain.
    Haddas R; James CR; Hooper TL
    J Athl Train; 2015 Apr; 50(4):378-84. PubMed ID: 25322344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the effects of altering hip orientation on gluteus medius and tensor fascae latae interplay during common non-weight-bearing hip rehabilitation exercises.
    Sidorkewicz N; Cambridge ED; McGill SM
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):971-6. PubMed ID: 25246373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison between back squat exercise and vertical jump kinematics: implications for determining anterior cruciate ligament injury risk.
    Wallace BJ; Kernozek TW; Mikat RP; Wright GA; Simons SZ; Wallace KL
    J Strength Cond Res; 2008 Jul; 22(4):1249-58. PubMed ID: 18545181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.
    Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D
    Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study.
    Smeets A; Malfait B; Dingenen B; Robinson MA; Vanrenterghem J; Peers K; Nijs S; Vereecken S; Staes F; Verschueren S
    Knee; 2019 Jan; 26(1):40-51. PubMed ID: 30415973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.