These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 25446269)
1. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs. Hippelheuser JE; Lauric A; Cohen AD; Malek AM J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269 [TBL] [Abstract][Full Text] [Related]
2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244 [TBL] [Abstract][Full Text] [Related]
3. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
4. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive morphomechanical analysis of brain aneurysms. Raghuram A; Galloy A; Nino M; Sanchez S; Hasan D; Raghavan S; Samaniego EA Acta Neurochir (Wien); 2023 Feb; 165(2):461-470. PubMed ID: 36595056 [TBL] [Abstract][Full Text] [Related]
6. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460 [TBL] [Abstract][Full Text] [Related]
7. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312 [TBL] [Abstract][Full Text] [Related]
8. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Khan MO; Steinman DA; Valen-Sendstad K Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717 [TBL] [Abstract][Full Text] [Related]
9. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Russell JH; Kelson N; Barry M; Pearcy M; Fletcher DF; Winter CD Neurosurgery; 2013 Dec; 73(6):1061-8; discussion 1068-9. PubMed ID: 23949275 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic analysis of intracranial aneurysms with daughter blebs. Zhang Y; Mu S; Chen J; Wang S; Li H; Yu H; Jiang F; Yang X Eur Neurol; 2011; 66(6):359-67. PubMed ID: 22134355 [TBL] [Abstract][Full Text] [Related]
11. Hemodynamics of anterior circulation intracranial aneurysms with daughter blebs: investigating the multidirectionality of blood flow fields. Lampropoulos DS; Boutopoulos ID; Bourantas GC; Miller K; Zampakis PE; Loukopoulos VC Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):113-125. PubMed ID: 35297711 [TBL] [Abstract][Full Text] [Related]
12. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
13. Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study. Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ J Korean Neurosurg Soc; 2019 Mar; 62(2):183-192. PubMed ID: 30840973 [TBL] [Abstract][Full Text] [Related]
14. [Hemodynamic analyses of large intracranial aneurysms]. Wu J; Liu A; Fu C; Zhao Y; Qian Z; Kang H; Peng T; Wu Z Zhonghua Yi Xue Za Zhi; 2014 Jul; 94(25):1921-4. PubMed ID: 25253001 [TBL] [Abstract][Full Text] [Related]
15. Differences Between Ruptured Aneurysms With and Without Blebs: Mechanistic Implications. Salimi Ashkezari SF; Mut F; Robertson AM; Cebral JR Cardiovasc Eng Technol; 2023 Feb; 14(1):92-103. PubMed ID: 35819581 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamics and bleb formation in intracranial aneurysms. Cebral JR; Sheridan M; Putman CM AJNR Am J Neuroradiol; 2010 Feb; 31(2):304-10. PubMed ID: 19797790 [TBL] [Abstract][Full Text] [Related]
17. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
18. Identification of a dichotomy in morphological predictors of rupture status between sidewall- and bifurcation-type intracranial aneurysms. Baharoglu MI; Lauric A; Gao BL; Malek AM J Neurosurg; 2012 Apr; 116(4):871-81. PubMed ID: 22242668 [TBL] [Abstract][Full Text] [Related]
19. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis. Baharoglu MI; Schirmer CM; Hoit DA; Gao BL; Malek AM Stroke; 2010 Jul; 41(7):1423-30. PubMed ID: 20508183 [TBL] [Abstract][Full Text] [Related]
20. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? Arzani A J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]