These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25446278)

  • 1. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.
    Jiang Y; Boll W; Noll M
    Dev Biol; 2015 Jan; 397(2):162-74. PubMed ID: 25446278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple function of poxn gene in larval PNS development and in adult appendage formation of Drosophila.
    Awasaki T; Kimura K
    Dev Genes Evol; 2001 Jan; 211(1):20-9. PubMed ID: 11277402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila.
    Dambly-Chaudière C; Jamet E; Burri M; Bopp D; Basler K; Hafen E; Dumont N; Spielmann P; Ghysen A; Noll M
    Cell; 1992 Apr; 69(1):159-72. PubMed ID: 1348214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage, cell polarity and inscuteable function in the peripheral nervous system of the Drosophila embryo.
    Orgogozo V; Schweisguth F; Bellaïche Y
    Development; 2001 Mar; 128(5):631-43. PubMed ID: 11171389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic determinants of sense organ identity in Drosophila: regulatory interactions between cut and poxn.
    Vervoort M; Zink D; Pujol N; Victoir K; Dumont N; Ghysen A; Dambly-Chaudière C
    Development; 1995 Sep; 121(9):3111-20. PubMed ID: 7555735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity.
    Lai EC; Orgogozo V
    Dev Biol; 2004 May; 269(1):1-17. PubMed ID: 15081353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pox-neuro is required for development of chemosensory bristles in Drosophila.
    Awasaki T; Kimura K
    J Neurobiol; 1997 Jun; 32(7):707-21. PubMed ID: 9183748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of bract formation in Drosophila: poxn, kek1, and the EGF-R pathway.
    Layalle S; Ragone G; Giangrande A; Ghysen A; Dambly-Chaudière C
    Genesis; 2004 Aug; 39(4):246-55. PubMed ID: 15286997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using
    Chen YD; Park SJ; Ja WW; Dahanukar A
    Front Cell Neurosci; 2018; 12():382. PubMed ID: 30405359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mis-expression study of factors affecting Drosophila PNS cell identity.
    O'Farrell F; Kylsten P
    Biochem Biophys Res Commun; 2008 Jun; 370(4):657-62. PubMed ID: 18420029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity of chemosensory neurons is controlled by the gene poxn in Drosophila.
    Nottebohm E; Dambly-Chaudière C; Ghysen A
    Nature; 1992 Oct; 359(6398):829-32. PubMed ID: 1436059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell lineage analysis of the Drosophila peripheral nervous system.
    Brewster R; Bodmer R
    Dev Genet; 1996; 18(1):50-63. PubMed ID: 8742834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.
    Birkholz O; Rickert C; Berger C; Urbach R; Technau GM
    Development; 2013 Apr; 140(8):1830-42. PubMed ID: 23533181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain.
    Minocha S; Boll W; Noll M
    PLoS One; 2017; 12(4):e0176002. PubMed ID: 28441464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyurea-mediated neuroblast ablation establishes birth dates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain.
    Lovick JK; Hartenstein V
    Dev Biol; 2015 Jun; 402(1):32-47. PubMed ID: 25773365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and specification of type II sensory neurons in Drosophila.
    Brewster R; Bodmer R
    Development; 1995 Sep; 121(9):2923-36. PubMed ID: 7555719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila.
    Andrews HK; Giagtzoglou N; Yamamoto S; Schulze KL; Bellen HJ
    EMBO Rep; 2009 Jun; 10(6):636-41. PubMed ID: 19444309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna.
    Sen A; Reddy GV; Rodrigues V
    Dev Biol; 2003 Feb; 254(1):79-92. PubMed ID: 12606283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.