BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 25446286)

  • 1. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation.
    Hyakutake T; Tominaga S; Matsumoto T; Yanase S
    J Biomech Eng; 2008 Feb; 130(1):011014. PubMed ID: 18298190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow analysis of red blood cell through microvascular bifurcations.
    Amini JA; Fallahyan F
    Biomed Sci Instrum; 1997; 33():567-72. PubMed ID: 9731423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations.
    Barber JO; Alberding JP; Restrepo JM; Secomb TW
    Ann Biomed Eng; 2008 Oct; 36(10):1690-8. PubMed ID: 18686035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell distribution in a microvascular network with successive bifurcations.
    Ye T; Peng L; Li G
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1821-1835. PubMed ID: 31161352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T; Rongin U; Xing Z
    Sci Rep; 2016 Feb; 6():20262. PubMed ID: 26830454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.
    Lykov K; Li X; Lei H; Pivkin IV; Karniadakis GE
    PLoS Comput Biol; 2015 Aug; 11(8):e1004410. PubMed ID: 26317829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vessel diameter on red cell distribution at microvascular bifurcations.
    Carr RT; Wickham LL
    Microvasc Res; 1991 Mar; 41(2):184-96. PubMed ID: 2051959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting bifurcation angle effect on blood flow in the microvasculature.
    Yang J; Pak YE; Lee TR
    Microvasc Res; 2016 Nov; 108():22-8. PubMed ID: 27389627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.