These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

844 related articles for article (PubMed ID: 25446315)

  • 21. Exploring plant transcriptomes using ultra high-throughput sequencing.
    Wang L; Li P; Brutnell TP
    Brief Funct Genomics; 2010 Mar; 9(2):118-28. PubMed ID: 20130067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SINGLE CELLS: SHUT YOUR EYES AND SEE.
    Perkel J
    Biotechniques; 2016; 61(4):165-171. PubMed ID: 27712578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems.
    Alon S; Goodwin DR; Sinha A; Wassie AT; Chen F; Daugharthy ER; Bando Y; Kajita A; Xue AG; Marrett K; Prior R; Cui Y; Payne AC; Yao CC; Suk HJ; Wang R; Yu CJ; Tillberg P; Reginato P; Pak N; Liu S; Punthambaker S; Iyer EPR; Kohman RE; Miller JA; Lein ES; Lako A; Cullen N; Rodig S; Helvie K; Abravanel DL; Wagle N; Johnson BE; Klughammer J; Slyper M; Waldman J; Jané-Valbuena J; Rozenblatt-Rosen O; Regev A; ; Church GM; Marblestone AH; Boyden ES
    Science; 2021 Jan; 371(6528):. PubMed ID: 33509999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated, multi-scale, spatial-temporal cell biology--A next step in the post genomic era.
    Horwitz R
    Methods; 2016 Mar; 96():3-5. PubMed ID: 26361333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Encoding Method of Single-cell Spatial Transcriptomics Sequencing.
    Zhou Y; Jia E; Pan M; Zhao X; Ge Q
    Int J Biol Sci; 2020; 16(14):2663-2674. PubMed ID: 32792863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput single-cell transcriptomics on organoids.
    Brazovskaja A; Treutlein B; Camp JG
    Curr Opin Biotechnol; 2019 Feb; 55():167-171. PubMed ID: 30504008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics.
    Lanz TV; Pröbstel AK; Mildenberger I; Platten M; Schirmer L
    Front Immunol; 2019; 10():1302. PubMed ID: 31244848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics.
    Liao J; Lu X; Shao X; Zhu L; Fan X
    Trends Biotechnol; 2021 Jan; 39(1):43-58. PubMed ID: 32505359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer vision for image-based transcriptomics.
    Stoeger T; Battich N; Herrmann MD; Yakimovich Y; Pelkmans L
    Methods; 2015 Sep; 85():44-53. PubMed ID: 26014038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Best practices for single-cell analysis across modalities.
    Heumos L; Schaar AC; Lance C; Litinetskaya A; Drost F; Zappia L; Lücken MD; Strobl DC; Henao J; Curion F; ; Schiller HB; Theis FJ
    Nat Rev Genet; 2023 Aug; 24(8):550-572. PubMed ID: 37002403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The technology and biology of single-cell RNA sequencing.
    Kolodziejczyk AA; Kim JK; Svensson V; Marioni JC; Teichmann SA
    Mol Cell; 2015 May; 58(4):610-20. PubMed ID: 26000846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial transcriptomics and the kidney.
    Melo Ferreira R; Gisch DL; Eadon MT
    Curr Opin Nephrol Hypertens; 2022 May; 31(3):244-250. PubMed ID: 35125393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical and machine learning methods for spatially resolved transcriptomics data analysis.
    Zeng Z; Li Y; Li Y; Luo Y
    Genome Biol; 2022 Mar; 23(1):83. PubMed ID: 35337374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential gene expression analysis of spatial transcriptomic experiments using spatial mixed models.
    Ospina OE; Soupir AC; Manjarres-Betancur R; Gonzalez-Calderon G; Yu X; Fridley BL
    Sci Rep; 2024 May; 14(1):10967. PubMed ID: 38744956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.
    Camp JG; Treutlein B
    Development; 2017 May; 144(9):1584-1587. PubMed ID: 28465333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subcellular spatially resolved gene neighborhood networks in single cells.
    Fang Z; Ford AJ; Hu T; Zhang N; Mantalaris A; Coskun AF
    Cell Rep Methods; 2023 May; 3(5):100476. PubMed ID: 37323566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Starfish enterprise: finding RNA patterns in single cells.
    Perkel JM
    Nature; 2019 Aug; 572(7770):549-551. PubMed ID: 31427807
    [No Abstract]   [Full Text] [Related]  

  • 39. The Secret Life of RNA: Lessons from Emerging Methodologies.
    Medioni C; Besse F
    Methods Mol Biol; 2018; 1649():1-28. PubMed ID: 29130187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy.
    Gohil SH; Iorgulescu JB; Braun DA; Keskin DB; Livak KJ
    Nat Rev Clin Oncol; 2021 Apr; 18(4):244-256. PubMed ID: 33277626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.