These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25446373)

  • 21. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical Ammonia Generation Directly from Nitrogen and Air Using an Iron-Oxide/Titania-Based Catalyst at Ambient Conditions.
    Manjunatha R; Karajić A; Goldstein V; Schechter A
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7981-7989. PubMed ID: 30724064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst.
    Wu ZY; Karamad M; Yong X; Huang Q; Cullen DA; Zhu P; Xia C; Xiao Q; Shakouri M; Chen FY; Kim JYT; Xia Y; Heck K; Hu Y; Wong MS; Li Q; Gates I; Siahrostami S; Wang H
    Nat Commun; 2021 May; 12(1):2870. PubMed ID: 34001869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser.
    Zou H; Rong W; Wei S; Ji Y; Duan L
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29462-29468. PubMed ID: 33172992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system.
    Hawtof R; Ghosh S; Guarr E; Xu C; Mohan Sankaran R; Renner JN
    Sci Adv; 2019 Jan; 5(1):eaat5778. PubMed ID: 30746439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts.
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2020 Aug; 142(33):14374-14383. PubMed ID: 32787255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomically dispersed Au
    Wang X; Wang W; Qiao M; Wu G; Chen W; Yuan T; Xu Q; Chen M; Zhang Y; Wang X; Wang J; Ge J; Hong X; Li Y; Wu Y; Li Y
    Sci Bull (Beijing); 2018 Oct; 63(19):1246-1253. PubMed ID: 36658862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single transition metal atom embedded into a MoS
    Zhao J; Zhao J; Cai Q
    Phys Chem Chem Phys; 2018 Apr; 20(14):9248-9255. PubMed ID: 29561001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Electrochemical Ammonia Synthesis from Nitric Oxide.
    Long J; Chen S; Zhang Y; Guo C; Fu X; Deng D; Xiao J
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9711-9718. PubMed ID: 32189423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system.
    Liu C; Sakimoto KK; Colón BC; Silver PA; Nocera DG
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6450-6455. PubMed ID: 28588143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles.
    Yang X; Nash J; Anibal J; Dunwell M; Kattel S; Stavitski E; Attenkofer K; Chen JG; Yan Y; Xu B
    J Am Chem Soc; 2018 Oct; 140(41):13387-13391. PubMed ID: 30244579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium.
    Cheng H; Cui P; Wang F; Ding LX; Wang H
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15541-15547. PubMed ID: 31502747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Photoelectrochemical Route for the Ambient Reduction of N
    Ye W; Arif M; Fang X; Mushtaq MA; Chen X; Yan D
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28809-28817. PubMed ID: 31322336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon.
    Song P; Wang H; Kang L; Ran B; Song H; Wang R
    Chem Commun (Camb); 2019 Jan; 55(5):687-690. PubMed ID: 30565601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerating ammonia synthesis in a membraneless flow electrolyzer through coupling ambient dinitrogen oxidation and water splitting.
    Lv JJ; Li Z; Fu J; Zhu W
    iScience; 2023 Apr; 26(4):106407. PubMed ID: 37020967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? - A DFT investigation.
    Kumar CVS; Subramanian V
    Phys Chem Chem Phys; 2017 Jun; 19(23):15377-15387. PubMed ID: 28574553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H
    Liu Y; Tian D; Biswas AN; Xie Z; Hwang S; Lee JH; Meng H; Chen JG
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11345-11348. PubMed ID: 32286728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications.
    Wang S; Ge H; Sun S; Zhang J; Liu F; Wen X; Yu X; Wang L; Zhang Y; Xu H; Neuefeind JC; Qin Z; Chen C; Jin C; Li Y; He D; Zhao Y
    J Am Chem Soc; 2015 Apr; 137(14):4815-22. PubMed ID: 25799018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.
    Wang J; Yu L; Hu L; Chen G; Xin H; Feng X
    Nat Commun; 2018 May; 9(1):1795. PubMed ID: 29765053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.