These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 25446438)

  • 21. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
    Beauchamp MS; Oswalt D; Sun P; Foster BL; Magnotti JF; Niketeghad S; Pouratian N; Bosking WH; Yoshor D
    Cell; 2020 May; 181(4):774-783.e5. PubMed ID: 32413298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography-guided retinal prosthesis design: model of degenerated retinal curvature and thickness for patient-specific devices.
    Opie NL; Ayton LN; Apollo NV; Ganesan K; Guymer RH; Luu CD
    Artif Organs; 2014 Jun; 38(6):E82-94. PubMed ID: 24689741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual electrodes by current steering in retinal prostheses.
    Dumm G; Fallon JB; Williams CE; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8077-85. PubMed ID: 25335975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind.
    Caspi A; Barry MP; Patel UK; Salas MA; Dorn JD; Roy A; Niketeghad S; Greenberg RJ; Pouratian N
    Brain Stimul; 2021; 14(4):851-860. PubMed ID: 33991713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized single pulse stimulation strategy for retinal implants.
    Savage CO; Grayden DB; Meffin H; Burkitt AN
    J Neural Eng; 2013 Feb; 10(1):016003. PubMed ID: 23220887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual prostheses for the blind.
    Shepherd RK; Shivdasani MN; Nayagam DA; Williams CE; Blamey PJ
    Trends Biotechnol; 2013 Oct; 31(10):562-71. PubMed ID: 23953722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis.
    Barriga-Rivera A; Guo T; Yang CY; Abed AA; Dokos S; Lovell NH; Morley JW; Suaning GJ
    Sci Rep; 2017 Feb; 7():42682. PubMed ID: 28209965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Restoring vision in blind patients following photoreceptor degeneration: clinical results and future challenges].
    Bendali A; Lorach H; Djilas M; Marre O; Bensoman R; Rousseau L; Lissorgues G; Scorsone E; Bergonzo P; Garrido JA; Sahel JA; Picaud S
    Biol Aujourdhui; 2013; 207(2):123-32. PubMed ID: 24103342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural stimulation for visual rehabilitation: advances and challenges.
    Lorach H; Marre O; Sahel JA; Benosman R; Picaud S
    J Physiol Paris; 2013 Nov; 107(5):421-31. PubMed ID: 23148976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The retina implant--new approach to a visual prosthesis.
    Alteheld N; Roessler G; Vobig M; Walter P
    Biomed Tech (Berl); 2004 Apr; 49(4):99-103. PubMed ID: 15171590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Will retinal implants restore vision?
    Zrenner E
    Science; 2002 Feb; 295(5557):1022-5. PubMed ID: 11834821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal Prostheses and Artificial Vision.
    Özmert E; Arslan U
    Turk J Ophthalmol; 2019 Sep; 49(4):213-219. PubMed ID: 31486609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP; Elfar SD
    J Neural Eng; 2009 Apr; 6(2):026007. PubMed ID: 19289859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
    Chen X; Wang F; Fernandez E; Roelfsema PR
    Science; 2020 Dec; 370(6521):1191-1196. PubMed ID: 33273097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Visual prostheses].
    Walter P
    Ophthalmologe; 2016 Feb; 113(2):175-88; quiz 189. PubMed ID: 26801322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.