BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 25447421)

  • 1. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving ruminal digestibility of various wheat straw types by white-rot fungi.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of fungal degradation of wheat straw cell wall using different analytical methods from ruminant nutrition perspective.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jun; 99(8):4054-4062. PubMed ID: 30737799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel techniques for the mass production of nutritionally improved, fungus-treated lignocellulosic biomass for ruminant nutrition.
    Sufyan A; Khan NA; AbuGhazaleh A; Ahmad N; Tang S; Tan Z
    J Sci Food Agric; 2024 Mar; 104(4):2215-2224. PubMed ID: 37938140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs.
    Kainthola J; Podder A; Fechner M; Goel R
    Bioresour Technol; 2021 Feb; 321():124397. PubMed ID: 33249324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed.
    Zhao X; Wang F; Fang Y; Zhou D; Wang S; Wu D; Wang L; Zhong R
    Bioresour Technol; 2020 Sep; 312():123512. PubMed ID: 32473472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal pretreatment of lignocellulosic biomass.
    Wan C; Li Y
    Biotechnol Adv; 2012; 30(6):1447-57. PubMed ID: 22433674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative
    van Erven G; Nayan N; Sonnenberg ASM; Hendriks WH; Cone JW; Kabel MA
    Biotechnol Biofuels; 2018; 11():262. PubMed ID: 30263063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe.
    Ćilerdžić J; Galić M; Vukojević J; Brčeski I; Stajić M
    BMC Plant Biol; 2017 Dec; 17(Suppl 2):249. PubMed ID: 29297329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi.
    Tamilselvan R; Immanuel Selwynraj A
    Anaerobe; 2024 Feb; 85():102815. PubMed ID: 38145708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation.
    Tuyen VD; Cone JW; Baars JJ; Sonnenberg AS; Hendriks WH
    Bioresour Technol; 2012 May; 111():336-42. PubMed ID: 22377477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions.
    Mao L; Sonnenberg ASM; Hendriks WH; Cone JW
    J Sci Food Agric; 2018 Feb; 98(3):1232-1239. PubMed ID: 29030967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass.
    Arantes V; Jellison J; Goodell B
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):323-38. PubMed ID: 22391968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forages and Pastures Symposium: revisiting mechanisms, methods, and models for altering forage cell wall utilization for ruminants.
    Tedeschi LO; Adams JM; Vieira RAM
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36617721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.
    Pérez J; Muñoz-Dorado J; de la Rubia T; Martínez J
    Int Microbiol; 2002 Jun; 5(2):53-63. PubMed ID: 12180781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.
    López-Abelairas M; Álvarez Pallín M; Salvachúa D; Lú-Chau T; Martínez MJ; Lema JM
    Bioprocess Biosyst Eng; 2013 Sep; 36(9):1251-60. PubMed ID: 23232963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species.
    Sufyan A; Ahmad N; Shahzad F; Embaby MG; AbuGhazaleh A; Khan NA
    J Sci Food Agric; 2022 Apr; 102(6):2445-2453. PubMed ID: 34636045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced delignification of lignocellulosic substrates by Pichia GS115 expressed recombinant laccase.
    Kumar VP; Kolte AP; Dhali A; Naik C; Sridhar M
    J Gen Appl Microbiol; 2018 Sep; 64(4):180-189. PubMed ID: 29695661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Fermentation with White Rot Fungi (
    Wang Y; Gou C; Chen L; Liao Y; Zhang H; Luo L; Ji J; Qi Y
    J Fungi (Basel); 2023 Nov; 9(12):. PubMed ID: 38132757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.