These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25447461)
1. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale. Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast microfluidic mixer and freeze-quenching device. Lin Y; Gerfen GJ; Rousseau DL; Yeh SR Anal Chem; 2003 Oct; 75(20):5381-6. PubMed ID: 14710815 [TBL] [Abstract][Full Text] [Related]
4. Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Park HY; Qiu X; Rhoades E; Korlach J; Kwok LW; Zipfel WR; Webb WW; Pollack L Anal Chem; 2006 Jul; 78(13):4465-73. PubMed ID: 16808455 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers. Wagner C; Buchegger W; Vellekoop M; Kraft M; Lendl B Anal Bioanal Chem; 2011 Jun; 400(8):2487-97. PubMed ID: 21369756 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235 [TBL] [Abstract][Full Text] [Related]
7. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149 [TBL] [Abstract][Full Text] [Related]
8. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis. Cherepanov AV; De Vries S Biochim Biophys Acta; 2004 May; 1656(1):1-31. PubMed ID: 15136155 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids. Verma MK; Ganneboyina SR; R VR; Ghatak A Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716 [TBL] [Abstract][Full Text] [Related]
10. A microsecond microfluidic mixer for characterizing fast biochemical reactions. Li Y; Zhang D; Feng X; Xu Y; Liu BF Talanta; 2012 Jan; 88():175-80. PubMed ID: 22265484 [TBL] [Abstract][Full Text] [Related]
11. Optimization of a microfluidic mixer for studying protein folding kinetics. Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436 [TBL] [Abstract][Full Text] [Related]
12. Micromixing within microfluidic devices. Capretto L; Cheng W; Hill M; Zhang X Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435 [TBL] [Abstract][Full Text] [Related]
13. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Ansari MA; Kim KY; Kim SM Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137 [TBL] [Abstract][Full Text] [Related]
14. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Yao S; Bakajin O Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-quadruplex. Li Y; Liu C; Feng X; Xu Y; Liu BF Anal Chem; 2014 May; 86(9):4333-9. PubMed ID: 24725010 [TBL] [Abstract][Full Text] [Related]
16. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Shastry MC; Luck SD; Roder H Biophys J; 1998 May; 74(5):2714-21. PubMed ID: 9591695 [TBL] [Abstract][Full Text] [Related]