These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25447561)

  • 1. Hydroxyl radicals cause fluctuation in intracellular ferrous ion levels upon light exposure during photoreceptor cell death.
    Imamura T; Hirayama T; Tsuruma K; Shimazawa M; Nagasawa H; Hara H
    Exp Eye Res; 2014 Dec; 129():24-30. PubMed ID: 25447561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effects of NSP-116, a novel imidazolyl aniline derivative, against light-induced retinal damage in vitro and in vivo.
    Izawa H; Shimazawa M; Inoue Y; Uchida S; Moroe H; Tsuruma K; Hara H
    Free Radic Biol Med; 2016 Jul; 96():304-12. PubMed ID: 27151507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of heparin-binding epidermal growth factor-like growth factor in light-induced photoreceptor degeneration in mouse retina.
    Inoue Y; Tsuruma K; Nakanishi T; Oyagi A; Ohno Y; Otsuka T; Shimazawa M; Hara H
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3815-29. PubMed ID: 23640042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression in the mouse retina: the effect of damaging light.
    Grimm C; Wenzel A; Hafezi F; Remé CE
    Mol Vis; 2000 Dec; 6():252-60. PubMed ID: 11134582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial protective effect of pramipexole on light-induced retinal damage in mice.
    Shibagaki K; Okamoto K; Katsuta O; Nakamura M
    Exp Eye Res; 2015 Oct; 139():64-72. PubMed ID: 26213307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of miRNAs in a Model of Retinal Degenerations.
    Saxena K; Rutar MV; Provis JM; Natoli RC
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1820-9. PubMed ID: 25711632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging.
    Picard E; Ranchon-Cole I; Jonet L; Beaumont C; Behar-Cohen F; Courtois Y; Jeanny JC
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1261-74. PubMed ID: 20881284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.
    Chen WJ; Wu C; Xu Z; Kuse Y; Hara H; Duh EJ
    Exp Eye Res; 2017 Jan; 154():151-158. PubMed ID: 27923559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance.
    Chen C; Chen J; Wang Y; Liu Z; Wu Y
    J Biol Chem; 2021; 296():100187. PubMed ID: 33334878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallothionein-III deficiency exacerbates light-induced retinal degeneration.
    Tsuruma K; Shimazaki H; Ohno Y; Inoue Y; Honda A; Imai S; Lee J; Shimazawa M; Satoh M; Hara H
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7896-903. PubMed ID: 23132798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of multiple pathways during photoreceptor apoptosis in the rd mouse.
    Doonan F; Donovan M; Cotter TG
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3530-8. PubMed ID: 16186330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reduced zinc diet or zinc transporter 3 knockout attenuate light induced zinc accumulation and retinal degeneration.
    Bai S; Sheline CR; Zhou Y; Sheline CT
    Exp Eye Res; 2013 Mar; 108():59-67. PubMed ID: 23274584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential effects of progranulin and granulins against retinal photoreceptor cell degeneration.
    Tanaka M; Kuse Y; Nakamura S; Hara H; Shimazawa M
    Mol Vis; 2019; 25():902-911. PubMed ID: 32025182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum stress is activated in light-induced retinal degeneration.
    Yang LP; Wu LM; Guo XJ; Li Y; Tso MO
    J Neurosci Res; 2008 Mar; 86(4):910-9. PubMed ID: 17929311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina.
    Delyfer MN; Forster V; Neveux N; Picaud S; Léveillard T; Sahel JA
    Mol Vis; 2005 Sep; 11():688-96. PubMed ID: 16163266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice.
    Nakanishi T; Shimazawa M; Sugitani S; Kudo T; Imai S; Inokuchi Y; Tsuruma K; Hara H
    J Neurochem; 2013 Apr; 125(1):111-24. PubMed ID: 23216380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light, Ca2+, and photoreceptor death: new evidence for the equivalent-light hypothesis from arrestin knockout mice.
    Fain GL; Lisman JE
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2770-2. PubMed ID: 10549634
    [No Abstract]   [Full Text] [Related]  

  • 18. NF-kappaB activation in light-induced retinal degeneration in a mouse model.
    Wu T; Chen Y; Chiang SK; Tso MO
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2834-40. PubMed ID: 12202499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II type 1 receptor blockade suppresses H2O2-induced retinal degeneration in photoreceptor cells.
    Yin Y; Huang SW; Zheng YJ; Dong YR
    Cutan Ocul Toxicol; 2015; 34(4):307-12. PubMed ID: 25430074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage and repair in light-induced photoreceptor degeneration.
    Gordon WC; Casey DM; Lukiw WJ; Bazan NG
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3511-21. PubMed ID: 12407163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.