These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 25447797)
1. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Jones RD; Lopez AM; Tong EY; Posey KS; Chuang JC; Repa JJ; Turley SD Steroids; 2015 Jan; 93():87-95. PubMed ID: 25447797 [TBL] [Abstract][Full Text] [Related]
2. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid. Jones RD; Repa JJ; Russell DW; Dietschy JM; Turley SD Am J Physiol Gastrointest Liver Physiol; 2012 Jul; 303(2):G263-74. PubMed ID: 22628034 [TBL] [Abstract][Full Text] [Related]
3. Downregulation of Zurkinden L; Sviridov D; Vogt B; Escher G Front Endocrinol (Lausanne); 2020; 11():586980. PubMed ID: 33193099 [TBL] [Abstract][Full Text] [Related]
4. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. Hu X; Bonde Y; Eggertsen G; Rudling M J Intern Med; 2014 Jan; 275(1):27-38. PubMed ID: 24118394 [TBL] [Abstract][Full Text] [Related]
5. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice. Zhu RG; Sun YD; Hou YT; Fan JG; Chen G; Li TP Chem Biol Interact; 2017 Jun; 272():153-159. PubMed ID: 28549616 [TBL] [Abstract][Full Text] [Related]
6. Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. Schwarz M; Russell DW; Dietschy JM; Turley SD J Lipid Res; 2001 Oct; 42(10):1594-603. PubMed ID: 11590215 [TBL] [Abstract][Full Text] [Related]
7. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Li T; Francl JM; Boehme S; Chiang JY Hepatology; 2013 Sep; 58(3):1111-21. PubMed ID: 23536474 [TBL] [Abstract][Full Text] [Related]
8. Increased cholesterol 7alpha-hydroxylase expression and size of the bile acid pool in the lactating rat. Wooton-Kee CR; Cohen DE; Vore M Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G1009-16. PubMed ID: 18292185 [TBL] [Abstract][Full Text] [Related]
9. Cholesterol feeding of mice expressing cholesterol 7alpha-hydroxylase increases bile acid pool size despite decreased enzyme activity. Tiemann M; Han Z; Soccio R; Bollineni J; Shefer S; Sehayek E; Breslow JL Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1846-51. PubMed ID: 14762172 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Li T; Matozel M; Boehme S; Kong B; Nilsson LM; Guo G; Ellis E; Chiang JY Hepatology; 2011 Mar; 53(3):996-1006. PubMed ID: 21319191 [TBL] [Abstract][Full Text] [Related]
11. Dietary cholesterol stimulates CYP7A1 in rats because farnesoid X receptor is not activated. Xu G; Pan LX; Li H; Shang Q; Honda A; Shefer S; Bollineni J; Matsuzaki Y; Tint GS; Salen G Am J Physiol Gastrointest Liver Physiol; 2004 May; 286(5):G730-5. PubMed ID: 14684380 [TBL] [Abstract][Full Text] [Related]
12. Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice. Murphy C; Parini P; Wang J; Björkhem I; Eggertsen G; Gåfvels M Biochim Biophys Acta; 2005 Aug; 1735(3):167-75. PubMed ID: 15994119 [TBL] [Abstract][Full Text] [Related]
13. Effects of essential fatty acid deficiency on enterohepatic circulation of bile salts in mice. Lukovac S; Los EL; Stellaard F; Rings EH; Verkade HJ Am J Physiol Gastrointest Liver Physiol; 2009 Sep; 297(3):G520-31. PubMed ID: 19608735 [TBL] [Abstract][Full Text] [Related]
14. Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Pandak WM; Bohdan P; Franklund C; Mallonee DH; Eggertsen G; Björkhem I; Gil G; Vlahcevic ZR; Hylemon PB Gastroenterology; 2001 Jun; 120(7):1801-9. PubMed ID: 11375960 [TBL] [Abstract][Full Text] [Related]
16. Comparative regulation of major enzymes in the bile acid biosynthesis pathway by cholesterol, cholate and taurine in mice and rats. Chen W; Suruga K; Nishimura N; Gouda T; Lam VN; Yokogoshi H Life Sci; 2005 Jul; 77(7):746-57. PubMed ID: 15936349 [TBL] [Abstract][Full Text] [Related]
17. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Chow EC; Magomedova L; Quach HP; Patel R; Durk MR; Fan J; Maeng HJ; Irondi K; Anakk S; Moore DD; Cummins CL; Pang KS Gastroenterology; 2014 Apr; 146(4):1048-59. PubMed ID: 24365583 [TBL] [Abstract][Full Text] [Related]
18. The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol- and bile acid-regulating gene expression in rat liver. Matsui S; Yamane T; Takita T; Oishi Y; Kobayashi-Hattori K Nutr Res; 2013 Jul; 33(7):580-5. PubMed ID: 23827133 [TBL] [Abstract][Full Text] [Related]
19. Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Ellis E; Axelson M; Abrahamsson A; Eggertsen G; Thörne A; Nowak G; Ericzon BG; Björkhem I; Einarsson C Hepatology; 2003 Oct; 38(4):930-8. PubMed ID: 14512880 [TBL] [Abstract][Full Text] [Related]
20. Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. Lan T; Rao A; Haywood J; Kock ND; Dawson PA J Hepatol; 2012 Aug; 57(2):359-65. PubMed ID: 22542490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]