BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25447870)

  • 21. Evaluation of scFv protein recovery from E. coli by in vitro refolding and mild solubilization process.
    Sarker A; Rathore AS; Gupta RD
    Microb Cell Fact; 2019 Jan; 18(1):5. PubMed ID: 30642336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations.
    Metzger KFJ; Padutsch W; Pekarsky A; Kopp J; Voloshin AM; Kühnel H; Maurer M
    J Biotechnol; 2020 Mar; 312():23-34. PubMed ID: 32114153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies.
    Yamaguchi H; Miyazaki M
    Bioengineered; 2015; 6(1):1-4. PubMed ID: 25531187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [In vitro renaturation of proteins from inclusion bodies].
    Porowińska D; Marszałek E; Wardęcka P; Komoszyński M
    Postepy Hig Med Dosw (Online); 2012 Jun; 66():322-9. PubMed ID: 22706118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli.
    Patra AK; Mukhopadhyay R; Mukhija R; Krishnan A; Garg LC; Panda AK
    Protein Expr Purif; 2000 Mar; 18(2):182-92. PubMed ID: 10686149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using High Pressure and Alkaline pH for Refolding.
    Morganti L; Chura-Chambi RM
    Methods Mol Biol; 2023; 2617():177-187. PubMed ID: 36656524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human growth hormone inclusion bodies present native-like secondary and tertiary structures which can be preserved by mild solubilization for refolding.
    Chura-Chambi RM; Farah CS; Morganti L
    Microb Cell Fact; 2022 Aug; 21(1):164. PubMed ID: 35978337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient solubilization of inclusion bodies.
    Freydell EJ; Ottens M; Eppink M; van Dedem G; van der Wielen L
    Biotechnol J; 2007 Jun; 2(6):678-84. PubMed ID: 17492713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian membrane receptors expression as inclusion bodies in Escherichia coli.
    Mouillac B; Banères JL
    Methods Mol Biol; 2010; 601():39-48. PubMed ID: 20099138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid matrix-assisted refolding of histidine-tagged proteins.
    Dashivets T; Wood N; Hergersberg C; Buchner J; Haslbeck M
    Chembiochem; 2009 Mar; 10(5):869-76. PubMed ID: 19235820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput system for determining dissolution kinetics of inclusion bodies.
    Dürauer A; Mayer S; Sprinzl W; Jungbauer A; Hahn R
    Biotechnol J; 2009 May; 4(5):722-9. PubMed ID: 19288514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solubilization of Escherichia coli recombinant proteins from inclusion bodies.
    Simpson RJ
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5485. PubMed ID: 20810632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unit Operation-Spanning Investigation of the Redox System.
    Ebner J; Humer D; Sedlmayr V
    Methods Mol Biol; 2023; 2617():165-176. PubMed ID: 36656523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recombinant murine growth hormone from E. coli inclusion bodies: expression, high-pressure solubilization and refolding, and characterization of activity and structure.
    Fradkin AH; Boand CS; Eisenberg SP; Rosendahl MS; Randolph TW
    Biotechnol Prog; 2010; 26(3):743-9. PubMed ID: 20196161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient in vitro refolding of recombinant bacterial laccase in Escherichia coli.
    Mollania N; Khajeh K; Ranjbar B; Rashno F; Akbari N; Fathi-Roudsari M
    Enzyme Microb Technol; 2013 May; 52(6-7):325-30. PubMed ID: 23608500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recombinant human epidermal growth factor inclusion body solubilization and refolding at large scale using expanded-bed adsorption chromatography from Escherichia coli.
    Sharma K; Babu PV; Sasidhar P; Srinivas VK; Mohan VK; Krishna E
    Protein Expr Purif; 2008 Jul; 60(1):7-14. PubMed ID: 18430585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperation between two ClpB isoforms enhances the recovery of the recombinant β-galactosidase from inclusion bodies.
    Guenther I; Zolkiewski M; Kędzierska-Mieszkowska S
    Biochem Biophys Res Commun; 2012 Oct; 426(4):596-600. PubMed ID: 22982305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.
    Lu SC; Lin SC
    Enzyme Microb Technol; 2012 Jan; 50(1):65-70. PubMed ID: 22133442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel protein refolding method using a zeolite.
    Chiku H; Kawai A; Ishibashi T; Takehara M; Yanai T; Mizukami F; Sakaguchi K
    Anal Biochem; 2006 Jan; 348(2):307-14. PubMed ID: 16316618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Pressure Homogenization for Inclusion Body Isolation.
    Ebner J; Sedlmayr V; Klausser R
    Methods Mol Biol; 2023; 2617():141-154. PubMed ID: 36656521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.