These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25448008)

  • 1. Cell replacement therapy: lessons from teleost fish.
    Zupanc GK; Sîrbulescu RF
    Exp Neurol; 2015 Jan; 263():272-6. PubMed ID: 25448008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    Brain Res; 2009 Dec; 1304():14-25. PubMed ID: 19782669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem-Cell-Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish.
    Zupanc GKH
    Dev Neurobiol; 2019 May; 79(5):406-423. PubMed ID: 30829442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon.
    Edelmann K; Glashauser L; Sprungala S; Hesl B; Fritschle M; Ninkovic J; Godinho L; Chapouton P
    J Comp Neurol; 2013 Sep; 521(13):3099-115. PubMed ID: 23787922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair.
    Lindsey BW; Hall ZJ; Heuzé A; Joly JS; Tropepe V; Kaslin J
    Prog Neurobiol; 2018 Nov; 170():99-114. PubMed ID: 29902500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors.
    Kroehne V; Freudenreich D; Hans S; Kaslin J; Brand M
    Development; 2011 Nov; 138(22):4831-41. PubMed ID: 22007133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous neurogenesis in adult mammals after spinal cord injury.
    Duan H; Song W; Zhao W; Gao Y; Yang Z; Li X
    Sci China Life Sci; 2016 Dec; 59(12):1313-1318. PubMed ID: 27796638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system.
    Sîrbulescu RF; Zupanc GK
    Brain Res Rev; 2011 Jun; 67(1-2):73-93. PubMed ID: 21059372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.
    Marichal N; Reali C; Rehermann MI; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1015():241-264. PubMed ID: 29080030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats.
    Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H
    Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord.
    Hoeber J; König N; Trolle C; Lekholm E; Zhou C; Pankratova S; Åkesson E; Fredriksson R; Aldskogius H; Kozlova EN
    Stem Cells Dev; 2017 Jul; 26(14):1065-1077. PubMed ID: 28562227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous radial glial cells support regenerating axons after spinal cord transection.
    Nomura H; Kim H; Mothe A; Zahir T; Kulbatski I; Morshead CM; Shoichet MS; Tator CH
    Neuroreport; 2010 Sep; 21(13):871-6. PubMed ID: 20671580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.
    Parr AM; Kulbatski I; Tator CH
    J Neurotrauma; 2007 May; 24(5):835-45. PubMed ID: 17518538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase of NG2-positive cells associated with radial glia following traumatic spinal cord injury in adult rats.
    Wu D; Shibuya S; Miyamoto O; Itano T; Yamamoto T
    J Neurocytol; 2005 Dec; 34(6):459-69. PubMed ID: 16902766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of Dopaminergic Neurons in Adult Zebrafish Depends on Immune System Activation and Differs for Distinct Populations.
    Caldwell LJ; Davies NO; Cavone L; Mysiak KS; Semenova SA; Panula P; Armstrong JD; Becker CG; Becker T
    J Neurosci; 2019 Jun; 39(24):4694-4713. PubMed ID: 30948475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.