BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25448044)

  • 1. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Jan; 282(1):108-17. PubMed ID: 25448044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Arch Toxicol; 2013 Sep; 87(9):1725-37. PubMed ID: 23864024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.
    Kiwamoto R; Ploeg D; Rietjens IM; Punt A
    Toxicol In Vitro; 2016 Mar; 31():114-25. PubMed ID: 26612355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in rat.
    Kiwamoto R; Rietjens IM; Punt A
    Chem Res Toxicol; 2012 Dec; 25(12):2630-41. PubMed ID: 22978292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and alpha,beta-unsaturated aldehydes: correct prediction of genotoxic activity through structure-activity relationship models.
    Benigni R; Conti L; Crebelli R; Rodomonte A; Vari' MR
    Environ Mol Mutagen; 2005 Dec; 46(4):268-80. PubMed ID: 15991240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer risk assessment for crotonaldehyde and 2-hexenal: an approach.
    Eder E; Schuler D; Budiawan
    IARC Sci Publ; 1999; (150):219-32. PubMed ID: 10626223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of cytotoxic alpha,beta-unsaturated aldehydes by carnosine: characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle.
    Aldini G; Granata P; Carini M
    J Mass Spectrom; 2002 Dec; 37(12):1219-28. PubMed ID: 12489081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer risk assessment for the environmental mutagen and carcinogen crotonaldehyde on the basis of TD(50) and comparison with 1,N(2)-propanodeoxyguanosine adduct levels.
    Eder E; Budiawan
    Cancer Epidemiol Biomarkers Prev; 2001 Aug; 10(8):883-8. PubMed ID: 11489755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationships for the mutagenicity and carcinogenicity of simple and alpha-beta unsaturated aldehydes.
    Benigni R; Passerini L; Rodomonte A
    Environ Mol Mutagen; 2003; 42(3):136-43. PubMed ID: 14556221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach.
    Abdullah R; Wesseling S; Spenkelink B; Louisse J; Punt A; Rietjens IMCM
    J Appl Toxicol; 2020 Dec; 40(12):1647-1660. PubMed ID: 33034907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.
    Paini A; Scholz G; Marin-Kuan M; Schilter B; O'Brien J; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2011 Sep; 26(5):605-18. PubMed ID: 21642616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.
    Charneira C; Godinho AL; Oliveira MC; Pereira SA; Monteiro EC; Marques MM; Antunes AM
    Chem Res Toxicol; 2011 Dec; 24(12):2129-41. PubMed ID: 22032494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds.
    Schultz TW; Yarbrough JW
    SAR QSAR Environ Res; 2004 Apr; 15(2):139-46. PubMed ID: 15199949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione depletion enhances the formation of endogenous cyclic DNA adducts derived from t-4-hydroxy-2-nonenal in rat liver.
    Chung FL; Komninou D; Zhang L; Nath R; Pan J; Amin S; Richie J
    Chem Res Toxicol; 2005 Jan; 18(1):24-7. PubMed ID: 15651845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of AFB(1)-macromolecular adducts in rats and humans at dietary levels of exposure.
    Cupid BC; Lightfoot TJ; Russell D; Gant SJ; Turner PC; Dingley KH; Curtis KD; Leveson SH; Turteltaub KW; Garner RC
    Food Chem Toxicol; 2004 Apr; 42(4):559-69. PubMed ID: 15019179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode of action based risk assessment of the botanical food-borne alkenylbenzene apiol from parsley using physiologically based kinetic (PBK) modelling and read-across from safrole.
    Alajlouni AM; Al Malahmeh AJ; Kiwamoto R; Wesseling S; Soffers AE; Al-Subeihi AA; Vervoort J; Rietjens IM
    Food Chem Toxicol; 2016 Mar; 89():138-50. PubMed ID: 26826679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling.
    Al-Subeihi AA; Alhusainy W; Paini A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Food Chem Toxicol; 2013 Sep; 59():564-71. PubMed ID: 23831728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.