These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25448134)

  • 1. Neural correlates of response-effector switching using event-related potentials.
    Hsieh S; Wu M; Lin F
    Biol Psychol; 2014 Dec; 103():332-48. PubMed ID: 25448134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological correlates of preparation and implementation for different types of task shifts.
    Hsieh S; Wu M
    Brain Res; 2011 Nov; 1423():41-52. PubMed ID: 22000079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological correlates of residual switch costs.
    Gajewski PD; Kleinsorge T; Falkenstein M
    Cortex; 2010 Oct; 46(9):1138-48. PubMed ID: 19717147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioural and neurophysiological correlates of bivalent and univalent responses during task switching.
    Mueller SC; Swainson R; Jackson GM
    Brain Res; 2007 Jul; 1157():56-65. PubMed ID: 17544384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Components of attentional set-switching.
    Rushworth MF; Passingham RE; Nobre AC
    Exp Psychol; 2005; 52(2):83-98. PubMed ID: 15850156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation.
    López Zunini RA; Morrison C; Kousaie S; Taler V
    Neuropsychologia; 2019 Oct; 133():107186. PubMed ID: 31513809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive flexibility and N2/P3 event-related brain potentials.
    Kopp B; Steinke A; Visalli A
    Sci Rep; 2020 Jun; 10(1):9859. PubMed ID: 32555267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-related potential correlates of task switching and switch costs.
    Kieffaber PD; Hetrick WP
    Psychophysiology; 2005 Jan; 42(1):56-71. PubMed ID: 15720581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct neurophysiological mechanisms mediate mixing costs and switch costs.
    Wylie GR; Murray MM; Javitt DC; Foxe JJ
    J Cogn Neurosci; 2009 Jan; 21(1):105-18. PubMed ID: 18476759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carry-over task rule in task switching: an ERP investigation using a Go/Nogo paradigm.
    Umebayashi K; Okita T
    Biol Psychol; 2013 Feb; 92(2):295-300. PubMed ID: 23182873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence effects in cued task switching modulate response preparedness and repetition priming processes.
    Jamadar S; Michie PT; Karayanidis F
    Psychophysiology; 2010 Mar; 47(2):365-86. PubMed ID: 20003149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control.
    Enriquez-Geppert S; Barceló F
    Brain Topogr; 2018 Jan; 31(1):17-34. PubMed ID: 27522402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Stimulus set and response set in task switching: a comparison using ERP].
    Umebayashi K; Okita T
    Shinrigaku Kenkyu; 2008 Dec; 79(5):399-406. PubMed ID: 19172908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-switching costs have distinct phase-locked and nonphase-locked EEG power effects.
    McKewen M; Cooper PS; Wong ASW; Michie PT; Sauseng P; Karayanidis F
    Psychophysiology; 2020 May; 57(5):e13533. PubMed ID: 31994736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Account of the Effect of Switch Probability on Switch and Mixing Costs: An ERP Study in a Cued Task-switching Paradigm.
    Wenwen C; Yang Y; Cui L; Chen Y; Zhang W; Zhang X; Zhou S
    Cogn Behav Neurol; 2022 Dec; 35(4):230-246. PubMed ID: 36136039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.